USC

INFORMATION

Cross-task Generalization Abilities of Large Language Models

7 o oo 1S5

Instance-level vs. Cross-task Generalization Benchmarking: The CrossFit Challenge

The CrossFit 5 Challenge

Large-scale Pre-training (e.g., BART, T5 models)
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Generous and subversive artworks!  Positive

Instance-level Contains no wit, only labored gags.  Negative

Generalization + Upstream Learning on a set of meta-train (seen) tasks
A gorgeous, witty, seductive movie.  Positive Multi-task learning First-order MAML
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Gain knowledge and experience from seen tasks. » 160 few-shot NLP tasks, covering four task categories

What? . . * Classification
Learn more efficiently when encountering new tasks. . .
Question Answering

(D It can help reduce task-specific efforts when we * Conditional Generation

o » Others
Why? develop new NLP appllc.atlorTs in the future. « Accessed and processed with @ huggingface datasets
(2) We should evaluate intelligent systems not only « Converted to a unified text-to-text format

on their skills, but also on skill-acquisition efficiency.

Evaluation Metric

Modeling: Cross-Task MoE for Modularity « We measure the success with average relative gain (ARG):
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* Naive multi-task learning is sub-optimal due to task S 3«;“.’@@‘%3 w7 “ed\m;. o L
. .. e €
interference. Task-level MoE addresses this issues and
improves generalization tq unseen tasks. o Key Takeaways
* The MoE model partly rediscovers human categorization
of NLP tasks (by itself!). Certain experts are strongly « Upstream learning on diverse NLP tasks enables cross-
associated with extractive tasks, some with classification task generalization.
tasks, and some with tasks requiring world knowledge. « Multi-task learning matches or outperforms more
complex meta-learning algorithms.
Modeling: FiD-ICL for Inference Efficiency » Similarity in task format does not fully explain how

models learn transferable skills.
» Applying task-specific prompts to only meta-test tasks

Fusion-in-decoder Example 1 Example 2 Example 3 Input
Fi D'ICL @ "Intermediate Fusion"  Encoder Encoder Encoder Encoder |eads to worse performance
Concat. Hidden Repe i @ ® * Both meta-train and meta-test tasks should be
Decoder formatted with prompts. = Instruction Tuning
Qutput
We adapt fusion-in-decoder models (Izacar L. 2020; Analysis: Predicting LLM Generalization Landscape
originally designed for open-domain QA) to perform in-
contextlea rning. Model Family|# param Task #shot | Perf.
GPT-3 3B strategy_ga 0 0.48
» Strong ICL performance on unseen tasks BIG-GT=1 | 8B |elementary_math| 3 0.19
« FiD-ICL outperforms Concat-ICL and Ensemble-ICL. PaLM B64B ||| cove_Ime_desoi) 2 0.23
GPT-3 6B elementary_math 1 ?

» The gap between FiD-ICL and fine-tuning is <3% on
P3 meta-test tasks.
* Faster Inference
» FiD-ICL s faster than Concat-ICL and Ensemble-ICL

We train regression models to predict LLM performance on
unseen experiment configurations.

* More efficient than fine-tuning when considering » LLMs’ performance follows predictable patterns. Our
optimization costs. model achieves an RMSE<0.05 in a random train-test split.
Ongoing and Future Work
Pushing the limit of in-context learning From data-sufficient learners to self-sufficient learners
Current research efforts mainly focus on ICL with So far, we prepare the few-shot examples for the LLMs.
examples of one single task. Will LLMs benefit from Can we enable them to learn in the open-endedness by

diverse and heterogeneous contexts? themselves?
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