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Learning from Observations of Large Language Model Capabilities

About me

● Qinyuan Ye 叶沁媛

○ Fifth-year PhD student at USC NLP

○ Advised by Professor Xiang Ren

● I want to build intelligent NLP systems that are versatile (adapt quickly) and curious (learn 
autonomously).

○ Supervision signals: explanations and instructions

○ Learning paradigms: meta-learning and self-improving

● Recently, I’m also interested in understanding large language models capabilities scientifically.

○ This talk!

2



Learning from Observations of Large Language Model Capabilities

New LLM releases!
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LLMs can do so many things!
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GPT-4 Blogpost (https://openai.com/research/gpt-4)
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LLMs can do so many things!
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LLMs can do so many things!
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(Source)

https://twitter.com/DrJimFan/status/1684435204289748992
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They also fail in unexpected ways…
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We have limited understanding of what LLMs are (not) capable of.
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Can we learn from our observations of LLM capabilities?

And use our findings to assist future LLM research and development?



How Predictable Are Large Language Model Capabilities?

A Case Study on BIG-bench
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When new LLMs are released, how are they evaluated?
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Llama 2: Open Foundation and Fine-Tuned Chat Models (Touvron et al., 2023)

Model 
Family

Size Tasks

# In-context Examples

So many experiment configurations!  



Learning from Observations of Large Language Model Capabilities

How predictable are large language model capabilities?
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What model scale should I use?

Which capabilities are hard to predict?

What tasks should I prioritize in evaluation?

LLM Researcher

LLM Developer

LLM User
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Part 1: Performance Prediction on BIG-bench

● Problem Definition
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Model 
Family

# Parameters

Tasks

# In-context Examples

Normalized 
Performance

Regression Problem. Evaluated with RMSE and R^2 score.

* limitations apply
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Part 1: Performance Prediction on BIG-bench

● Data
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We gathered and filtered the records in BIG-bench. We got 56k records covering diverse models and tasks.
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Part 1: Performance Prediction on BIG-bench

● Results (Random Train-Test Split)
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RMSE < 0.05
on average mis-predict by <0.05
when the range is [0,1]

R^2 > 95%
explain more than 95% variance in 
the target variable
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Part 1: Performance Prediction on BIG-bench

● Controlled Analysis
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We split test set into groups and report the performance in each group.
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Part 1: Performance Prediction on BIG-bench

● Controlled Analysis
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We control what the training set contains.
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Part 1: Performance Prediction on BIG-bench

● Controlled Analysis
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Zero-shot performance 
is harder to predict.

Performance of larger 
models is harder to predict.
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Part 1: Performance Prediction on BIG-bench

● Controlled Analysis
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Multi-group training is always helpful.
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Part 1: Performance Prediction on BIG-bench

● Controlled Analysis
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Some groups are intrinsically harder to predict.Some groups benefit more from multi-group training.
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Part 1: Performance Prediction on BIG-bench

● Least 
Predictable 
Tasks
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Part 1: Performance Prediction on BIG-bench
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Prediction accuracy decreases when the train-test split becomes more challenging!

Easier

Harder

● Results (Challenging Train-Test Split)
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Part 1: Performance Prediction on BIG-bench
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Emergent abilities (Wei et al., 2022)

… are in general harder to predict … can be predicted accurately in certain cases

RMSE (↓) R^2 (↑)

Emergent Tasks 0.0541 93.86%

Non-emergent Tasks 0.0496 95.16%

All 0.0499 95.07%

Potential Reason
A similar task is emergent and is in the training set.

https://arxiv.org/abs/2206.07682
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Part 2: Searching for “small-bench”

● Problem Definition
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Given an evaluation 
budget of b

Select b tasks

Performance on remaining tasks 
are maximally recovered
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Part 2: Searching for “small-bench”

● Results
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BIG-bench Lite and BIG-bench Hard are 
suboptimal if the goal is to recover the 
performance on remaining tasks.

We are able to find subsets that are as 
informative as BIG-bench Hard while
being 3x smaller.
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Part 2: Searching for “small-bench”

● Results
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K-means
Clustering task representations learned by 
the MLP predictors in Part 1;
Then select tasks close to cluster centroids.

Task Value
Estimated from “Best of 5000”.

Task diversity and task value are important 
factors in constructing “small-bench.” 
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Summary

● We gathered 56k LLM experiment records in BIG-bench.

● We trained models to predict LLM performance on unseen experiment configurations.

○ An MLP predictor can achieve RMSE < 5%, R^2 > 95% on the random train-test split.

○ Prediction performance changes when train-test distribution changes.

○ Emergent abilities are harder to predict in general, but can be predicted accurately in some cases.

● We searched for “small-bench,” a subset of BIG-bench, from which the full BIG-bench 
performance can be maximally recovered.

○ BIG-bench Lite and BIG-bench Hard are sub-optimal for this purpose.

○ Task diversity and task value are important factors for constructing “small-bench.”
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Looking Ahead

● Rethinking LLM evaluation
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Holistic Evaluation of Language Models (Liang et al., 2023)

Task selection is often heuristic, following past practices, or done arbitrarily.
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Looking Ahead

● Broadening observations on LLM capability landscape
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Will be nice to take these into account!

Currently

Liang et al., 2023;
Sahn et al., 2022;

Ouyang et al., 2022;
Wei et al., 2022.



Estimating Large Language Model Capabilities without Labeled Test Data
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The Promises of Few-shot Learning
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https://javascript.plainenglish.io/15-things-all-programmers-can-relate-to-7db1ce811b8

I only need 16 annotated examples! To know whether the LLM works well for my task,
I need to annotate 1000 examples for testing…

Can we estimate LLM capabilities without labeled test data?

https://javascript.plainenglish.io/15-things-all-programmers-can-relate-to-7db1ce811b8
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Estimating Large Language Model Capabilities without Labeled Test Data
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● We can gain insights from model confidence / calibration.

Language Models (Mostly) Know What They Know (Kadavath et al., 2022)

Naïve Solution:
Take the average of confidence on all test examples.

Limitations:
Perfect calibration is not guaranteed to happen.
Limited to classification / multiple-choice QA.
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Estimating Large Language Model Capabilities without Labeled Test Data
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● Our proposed method
● Training a meta-model that estimates 

performance based on confidence profiles.
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Confidence Profiles
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● Compute the confidence score for each test example

● Collect confidence distributions and extract the percentile vector

● Train a meta-model to output dataset-level accuracy based on the percentile vector

Closed-set Generation Open-ended Generation

1. Get model confidence at 5%, 10%, …, 
95% percentile of the distribution.

2. Use this vector as the input feature to 
the meta-model.
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Experiment Settings
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● Getting the observations of LLM performance

○ 3 Tasks: MMLU (57 subtasks), MCQA (21 subtasks), CBQA (13 subtasks)

○ 4 LLMs: OPT 6.7B, OPT 13B, LLaMA 7B, LLaMA 13B

○ 12 settings in total (3 tasks x 4 LLMs), 42,360 ICL performance observations in total

● For each setting, run cross-validation on the observations

○ Training the meta-model on some subtasks

○ Estimate the accuracy on unseen subtasks
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Compared Methods
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● Meta-models (ours)

○ We consider k-NN, MLP, XGBoost models for regression

● Baselines

○ Train Avg: use average accuracy on seen subtasks as estimated accuracy.

○ Avg Confidence: use average confidence on test examples as estimated accuracy.

○ Temperature Scaling: scale the confidence with an extra temperature parameter; fit it on the training 
set.

● Oracles

○ Oracle k: assuming we have k annotated test examples, use model accuracy on these k examples as 
estimation of accuracy on the full test set.

○ k=4, 8, 16, 32, 64
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Results

37

Meta Models (ours) Baselines Oracles (lines)

On average, meta-model estimations are as accurate as having 40 labeled test examples.
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Results
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Summary
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● We formalize the problem of few-shot ICL accuracy estimation.

○ Given a handful of labeled in-context examples and a set of unlabeled test examples, our goal is to 
estimate the overall accuracy of ICL on these test examples

● We propose to address this problem by training a “meta-model,” which takes in the LLM’s 
confidence profile as input and outputs the task accuracy.

● We benchmark our meta-model method and various baselines on 12 settings (4 LLMs x 3 tasks).

○ On average, meta-model estimations are as accurate as having 40 labeled test examples.
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Looking Ahead

● Providing a channel for LLMs to say “sorry, I’m not confident about completing this task.”

● Ensuring safety and reliability in LLM-powered applications.
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Thank you!

Xiang RenHarvey Yiyun Fu Robin Jia

https://nlp.usc.edu/

Albert Xu

Also, thanks to my awesome collaborators and mentors at USC NLP!

https://nlp.usc.edu/
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Links

● How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench

● Paper: https://arxiv.org/abs/2305.14947
● Code: https://github.com/INK-USC/predicting-big-bench

● Estimating Large Language Model Capabilities without Labeled Test Data

● Paper: https://arxiv.org/abs/2305.14802
● Code: https://github.com/harvey-fin/icl-estimate
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https://arxiv.org/abs/2305.14947
https://github.com/INK-USC/predicting-big-bench
https://arxiv.org/abs/2305.14802
https://github.com/harvey-fin/icl-estimate
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