Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition

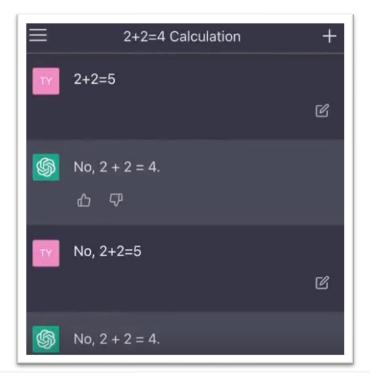
Robin Jia

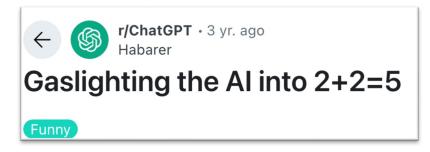
Xiang Ren

Thomas Lord Department of Computer Science
University of Southern California

September 3, 2025

How to trick language models to say "2+2=5"?





Computer Science > Computation and Language

[Submitted on 8 Nov 2023 (v1), last revised 15 Nov 2023 (this version, v2)]

Frontier Language Models are not Robust to Adversarial Arithmetic, or "What do I need to say so you agree 2+2=5?

C. Daniel Freeman, Laura Culp, Aaron Parisi, Maxwell L Bileschi, Gamaleldin F Elsayed, Alex Rizkowsky, Isabelle Simpson, Alex Alemi, Azade Nova, Ben Adlam, Bernd Bohnet, Gaurav Mishra, Hanie Sedghi, Igor Mordatch, Izzeddin Gur, Jaehoon Lee, JD Co-Reyes, Jeffrey Pennington, Kelvin Xu, Kevin Swersky, Kshiteej Mahajan, Lechao Xiao, Rosanne Liu, Simon Kornblith, Noah Constant, Peter J. Liu, Roman Novak, Yundi Qian, Noah Fiedel, Jascha Sohl-Dickstein

Managed to convince it that 2 + 2 = 5 is a plausibility

Jailbreak

How to trick language models to say "2+2=5"?

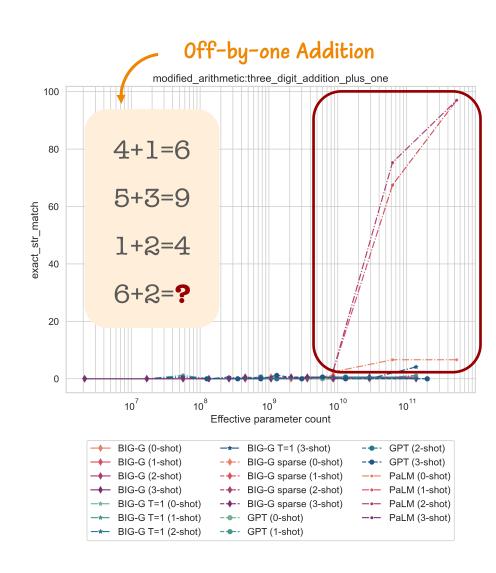

```
from transformers import pipeline

pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B", device=device)
result = pipe("1+1=3\n2+2=", max_new_tokens=1, do_sample=False)

print(result[0]['generated_text'])
```


1+1=3 2+2=<mark>5</mark>

First documented in BIG-bench

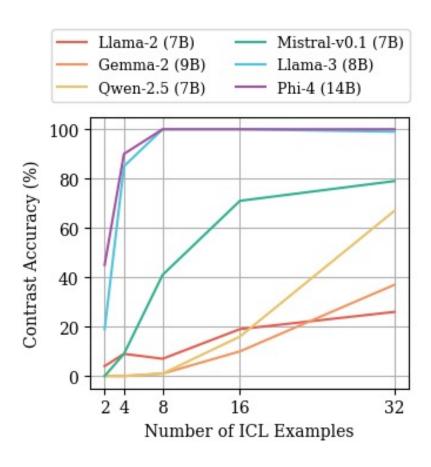


PaLM 64B and 535B have non-trivial performance.

Identified as an "emergent ability".

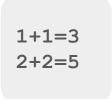
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models (Srivastava et al., 2022); Emergent Abilities of Large Language Models (Wei et al., 2022)

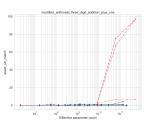
Our evaluation with more recent models

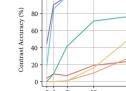


More recent, smaller models can perform this task well!

Research Question







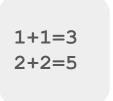
How do LMs perform off-by-one addition?

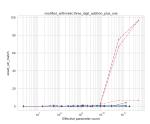
Can models learn unseen tasks with ICL?

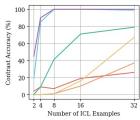
How do LMs handle misinformation?

Why do emergent abilities emerge?

Research Question







How do LMs perform off-by-one addition?

Interpretability

Tools

Research Question

How do LMs perform off-by-one addition?

Interpretability

Tools

Activation Patching

Locating and Editing Factual Associations in GPT

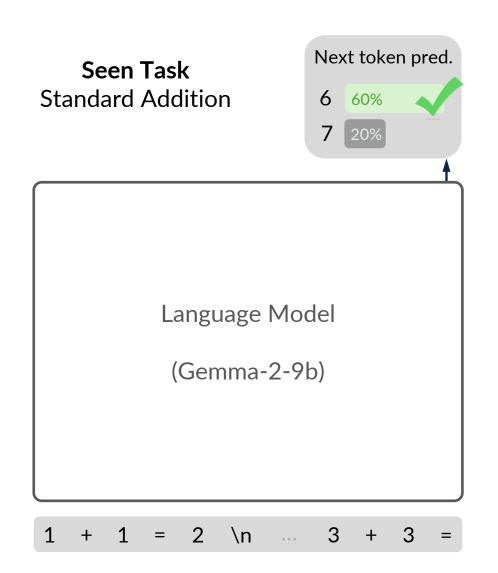
Kevii MIT INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2 SMALL

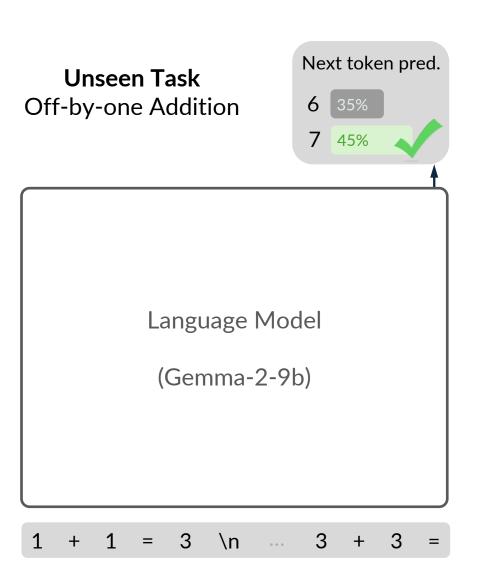
Kevin Wang 1, Alexandre Variengien 1, Arthur Conmy 1, Buck Shlegeris 1 & Jacob Steinhardt 1, 2 Redwood Research

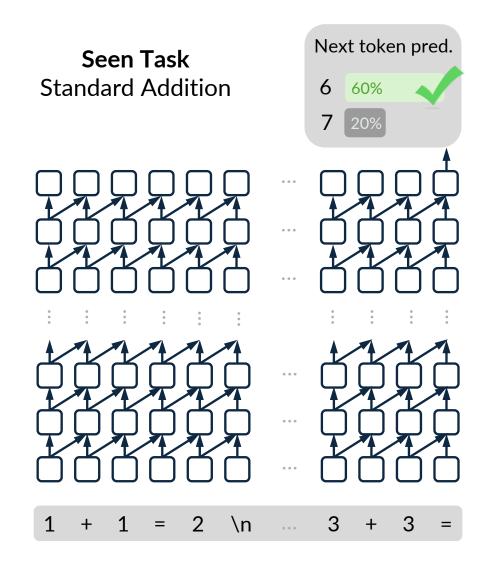
²UC Berkeley

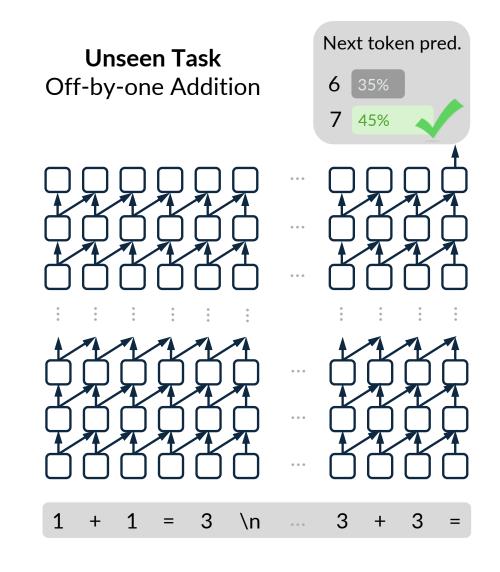
kevin@rdwrs.com, alexandre@rdwrs.com, arthur@rdwrs.com, buck@rdwrs.com, jsteinhardt@berkeley.edu

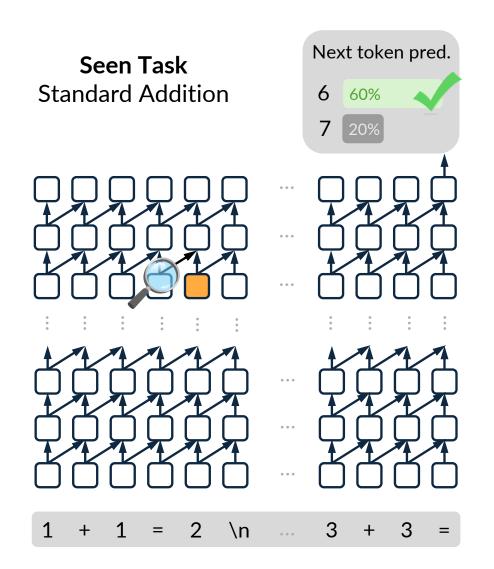
Path Patching

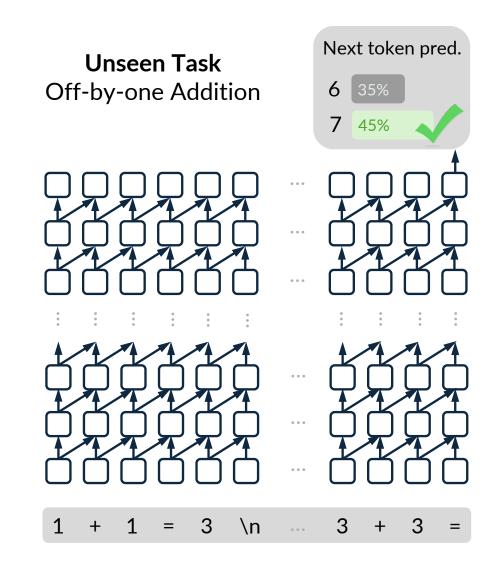


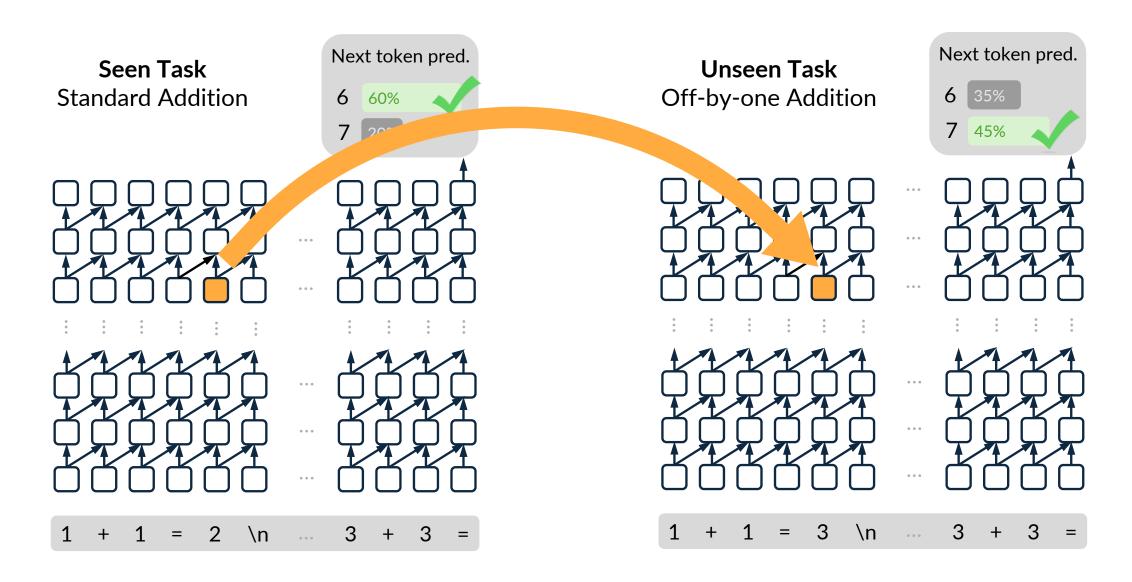


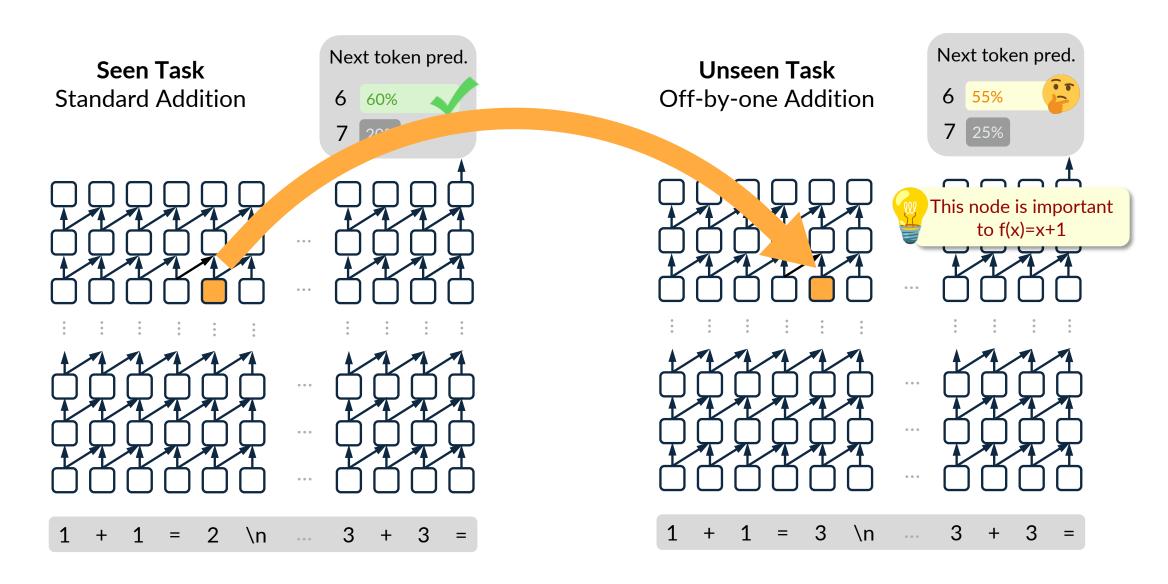


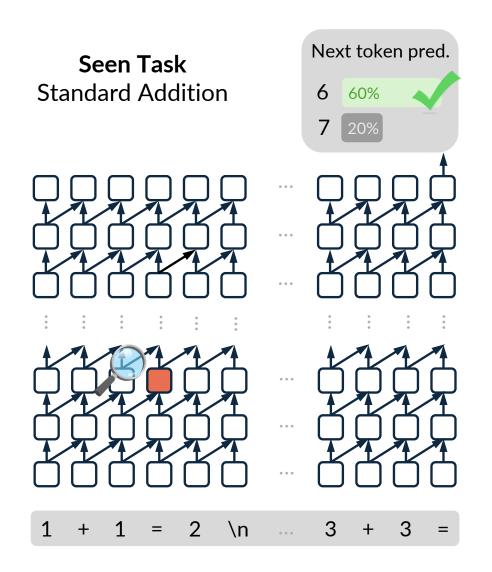


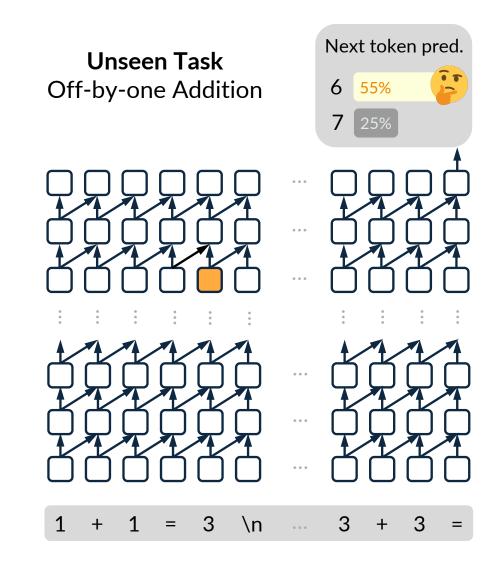


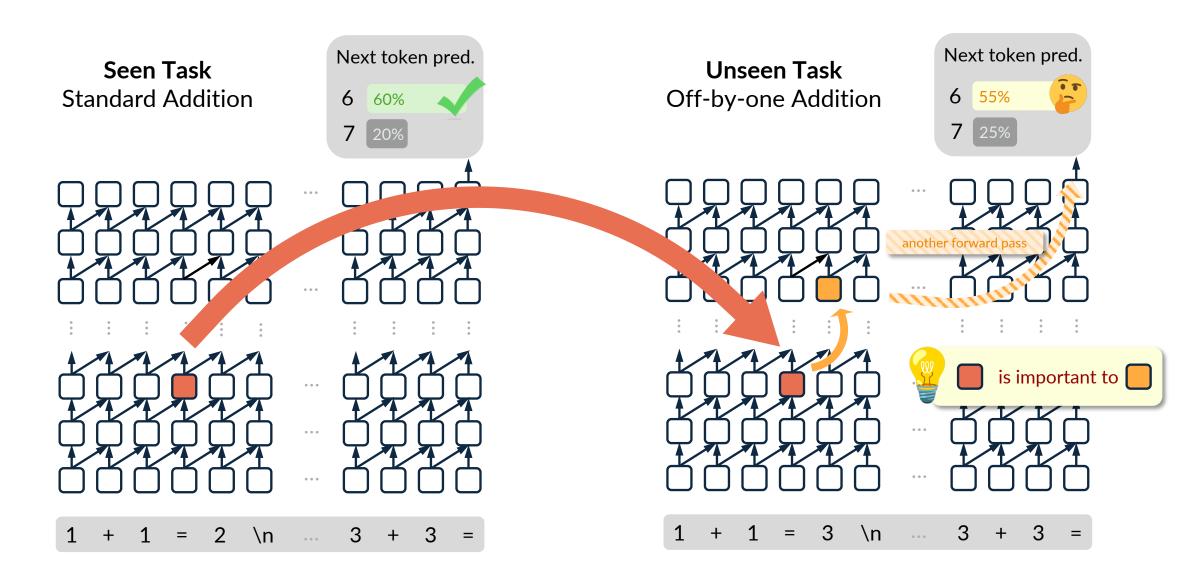


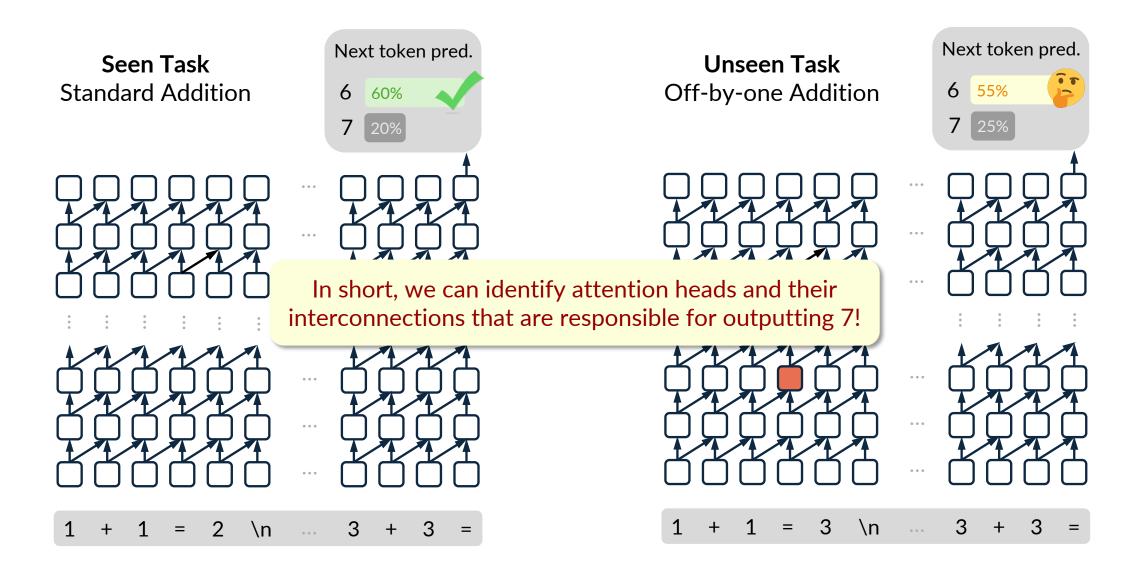


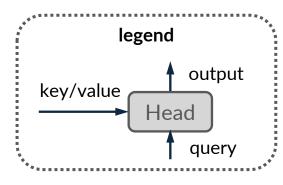


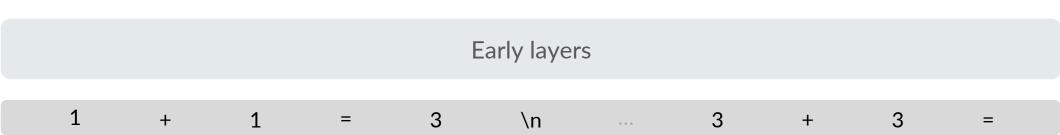


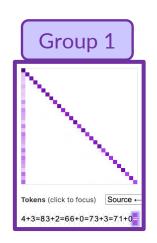


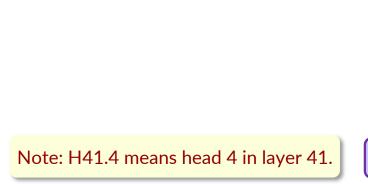


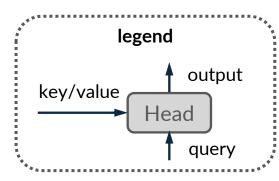


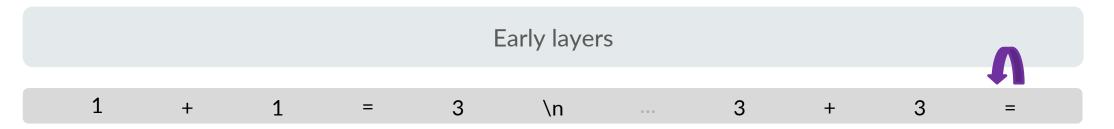


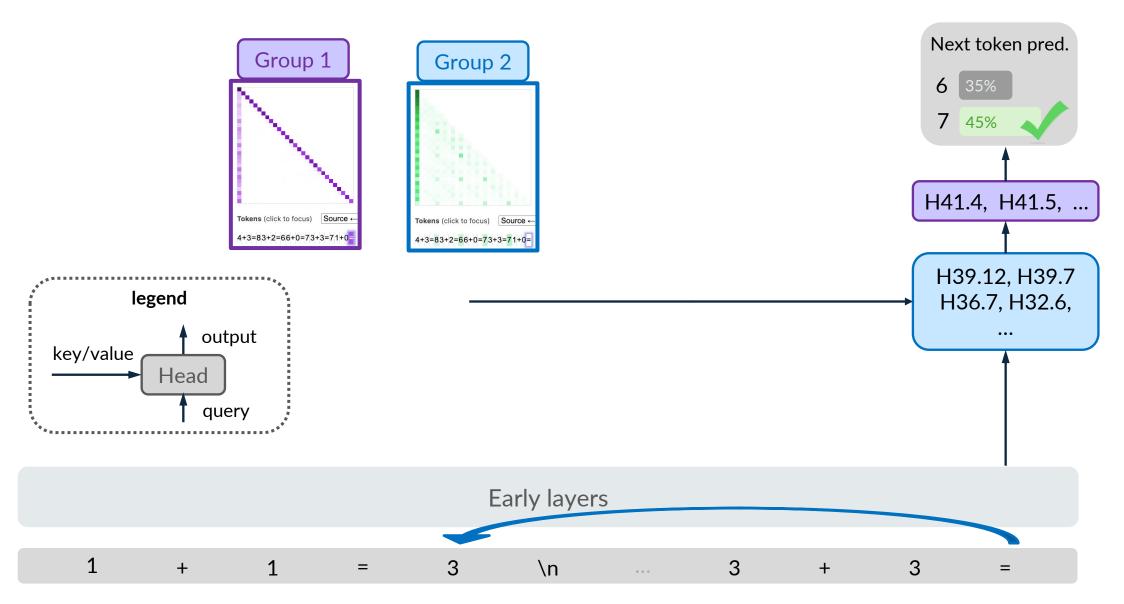


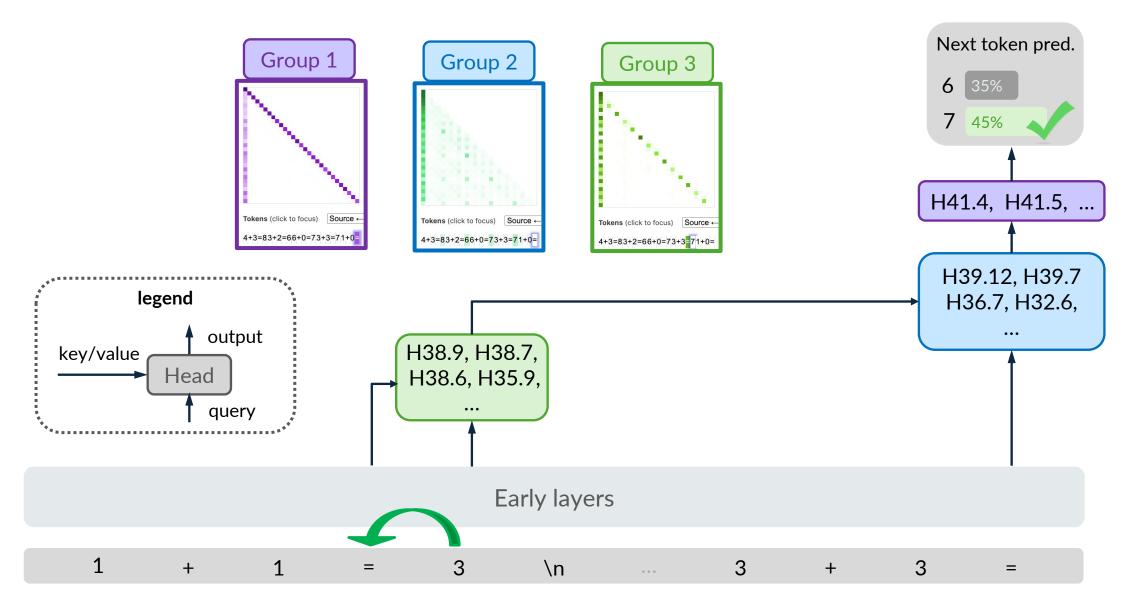




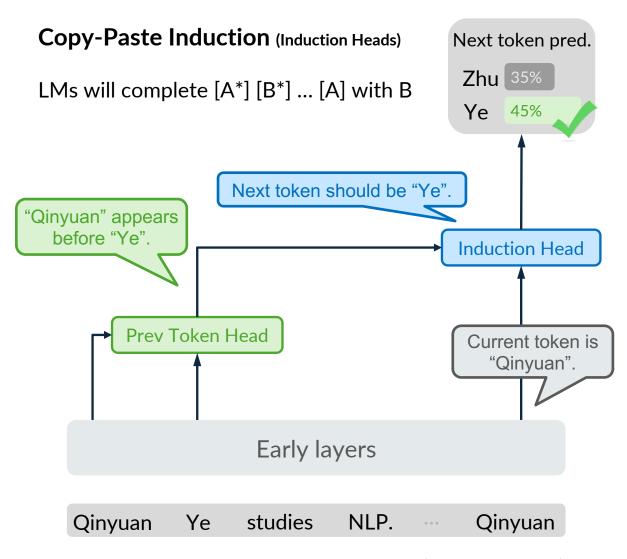






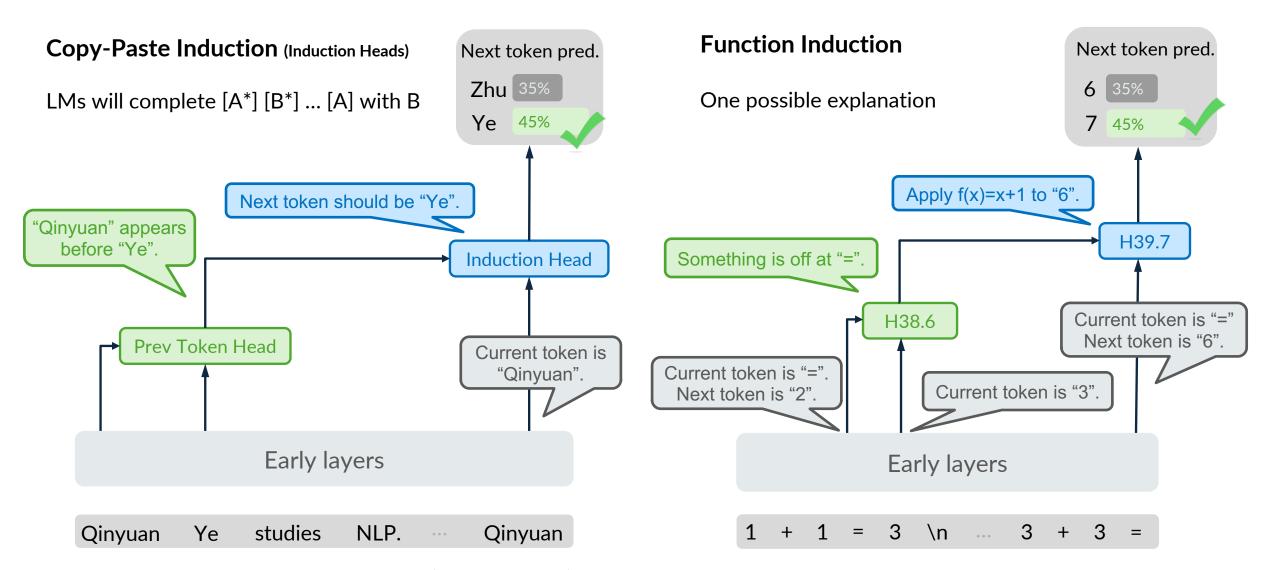


Revisiting Induction Heads



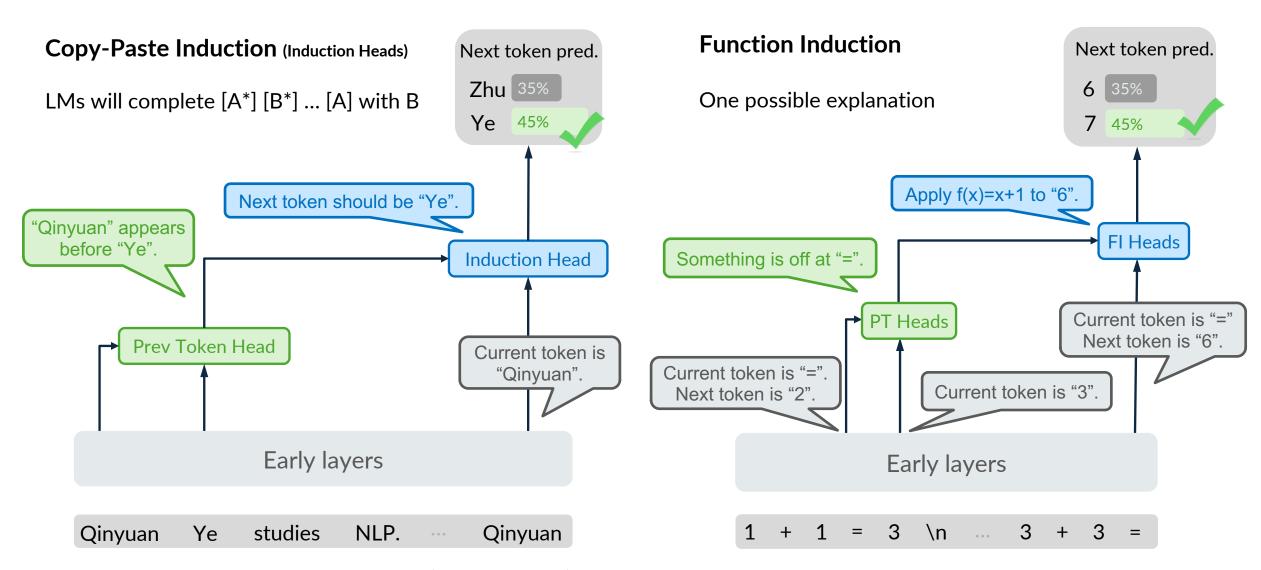
In-context Learning and Induction Heads (Olsson et al., 2022)

Revisiting Induction Heads



In-context Learning and Induction Heads (Olsson et al., 2022)

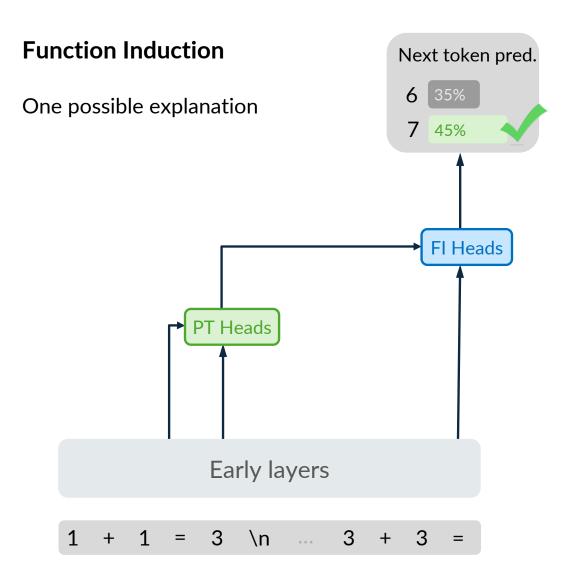
Revisiting Induction Heads



In-context Learning and Induction Heads (Olsson et al., 2022)

Finding 1: Function Induction Mechanism

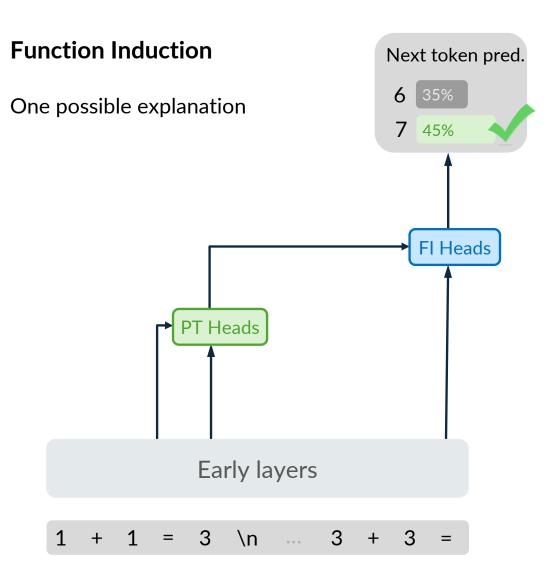
- LMs may be implementing a complex function induction mechanism.
 - Generalizes the findings in Olsson et al., 2022;
 - Elevates it from the token level to the function level.



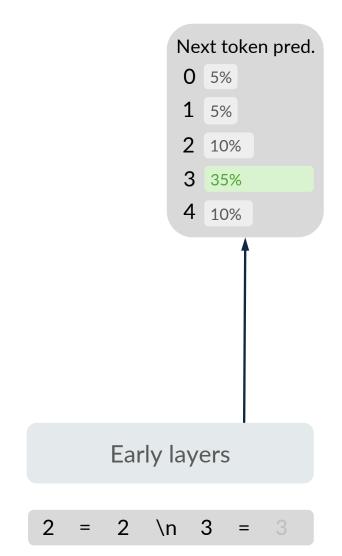
Finding 1: Function Induction Mechanism

- LMs may be implementing a complex function induction mechanism.
 - Generalizes the findings in Olsson et al., 2022;
 - Elevates it from the token level to the function level.

- → More questions
 - Are these heads really writing out f(x)=x+1?
 - o If f(x)=x+1 is emitted 9 times via 9 heads, why is it not interpreted as "+9" by the model?



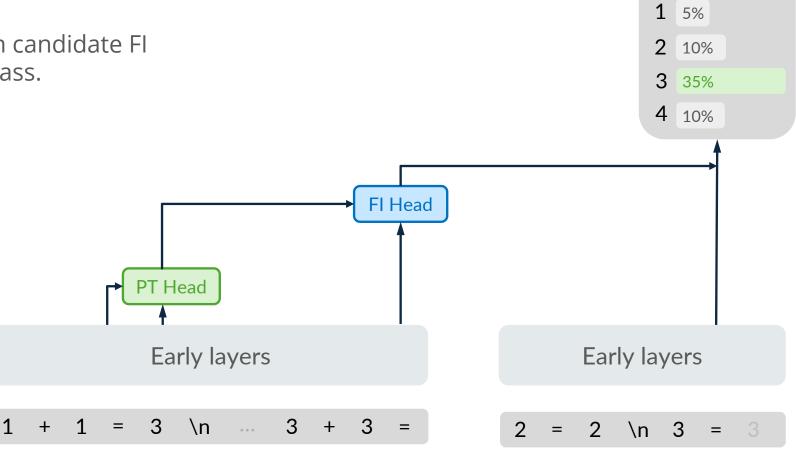
 We run the LM on a naive prompt, e.g., 2=2, 3=?



0 5%

Next token pred.

- We run the LM on a naive prompt, e.g., 2=2, 3=?
- We patch the output of each candidate FI head to the naive forward pass.

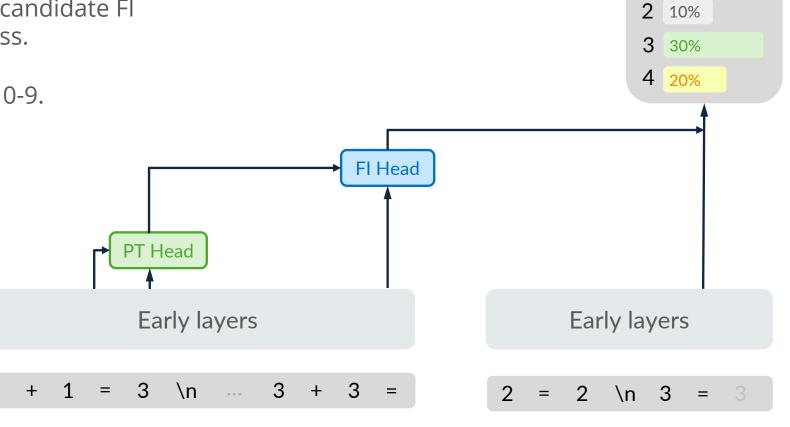


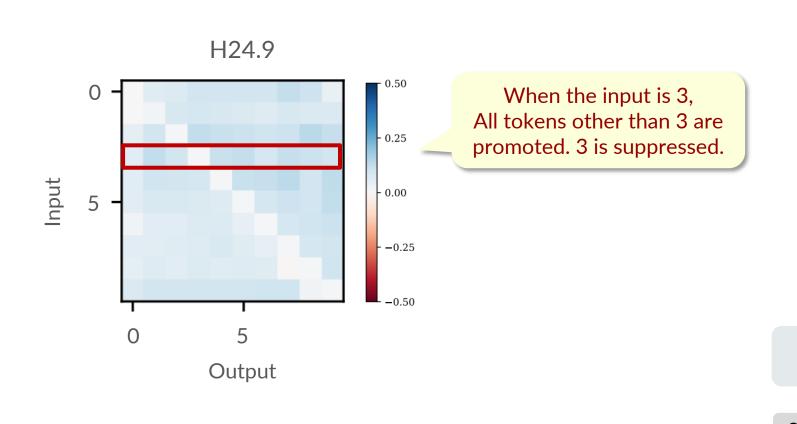
0 5%

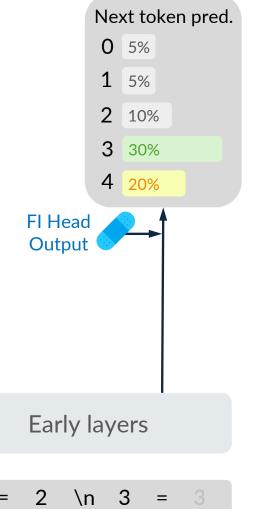
1 5%

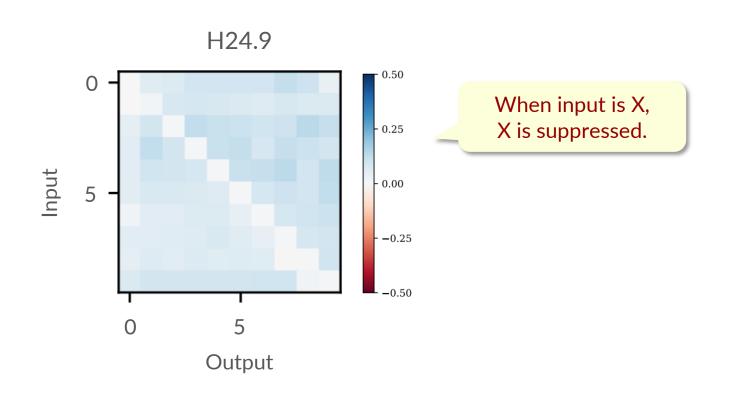
Next token pred.

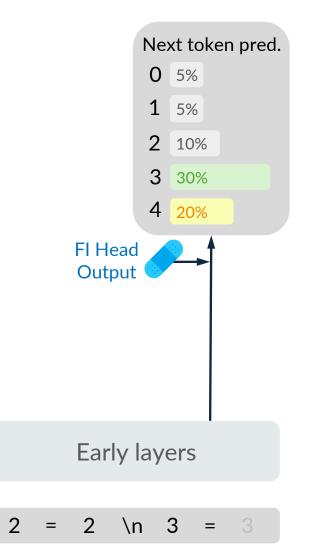
- We run the LM on a naive prompt, e.g., 2=2, 3=?
- We patch the output of each candidate FI head to the naive forward pass.
- We track the logit change for 0-9.

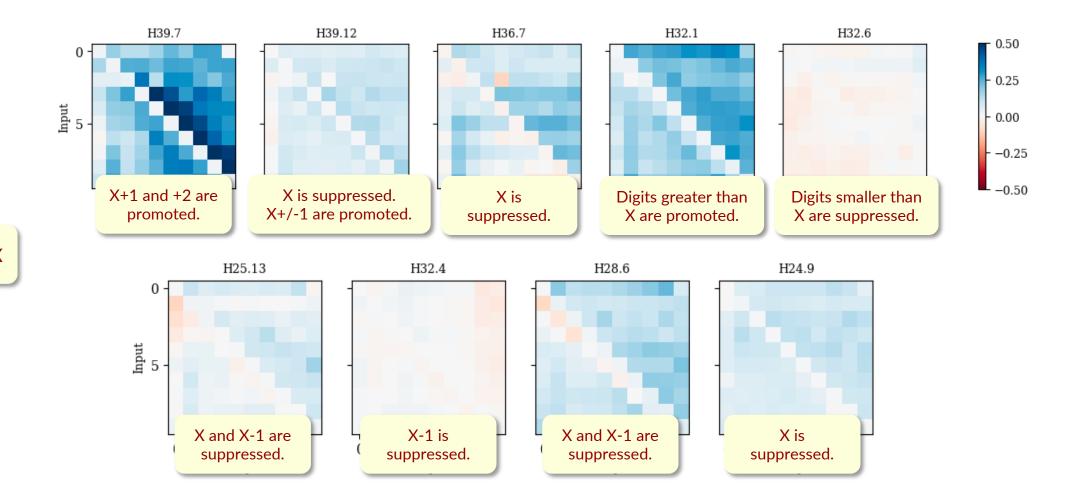




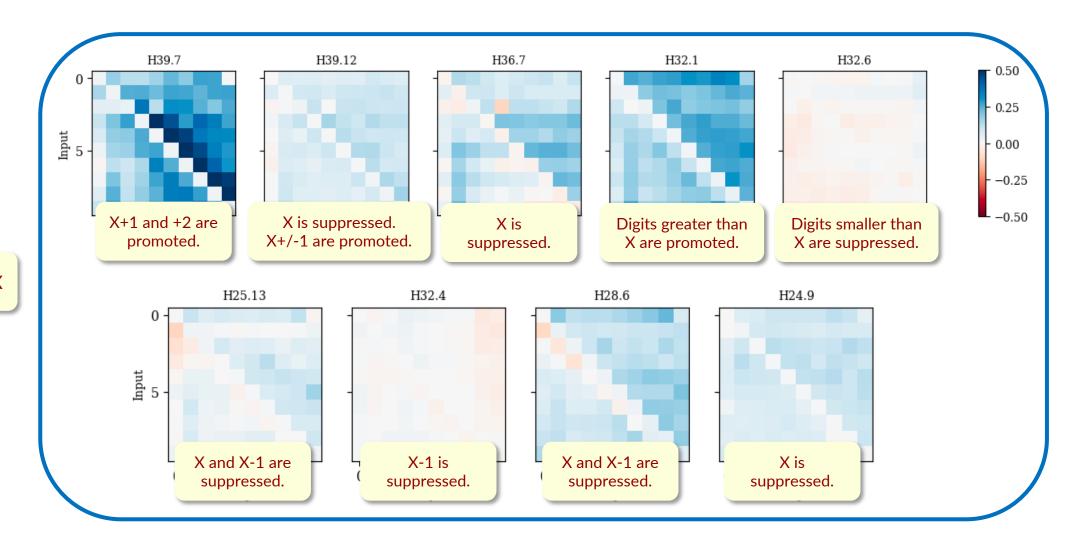






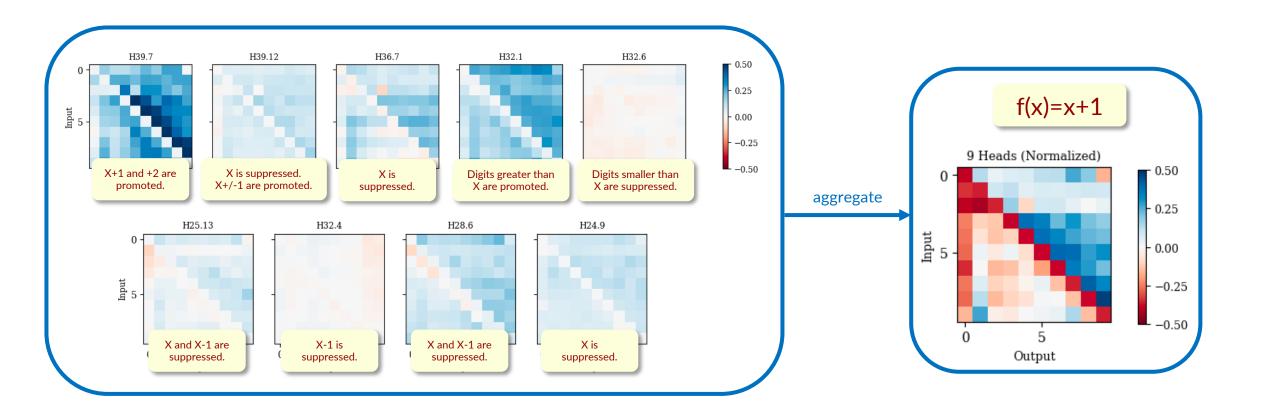


When the input is X



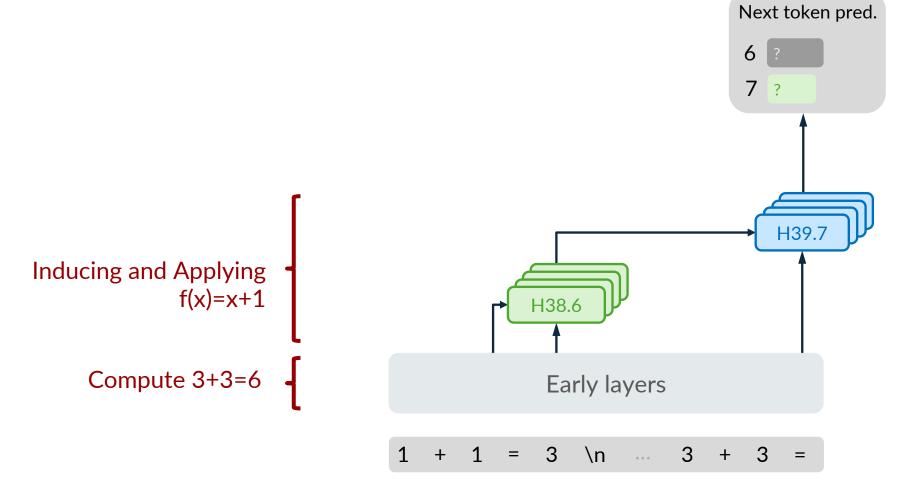
When the input is X

Finding 2: FI Heads Work Collaboratively!



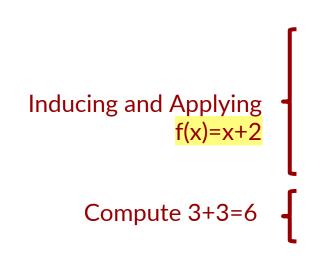
From Off-by-one to Off-by-k Addition

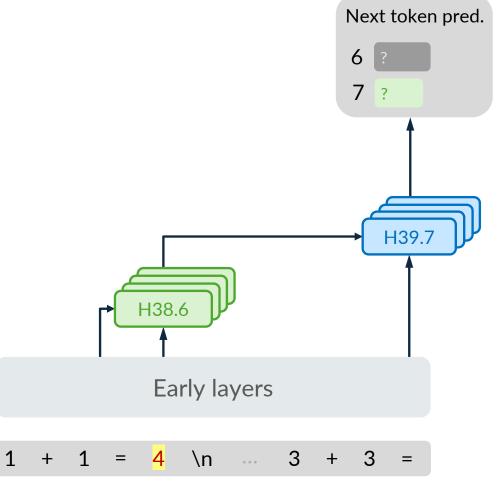
So far, we've been focusing on off-by-one addition.



From Off-by-one to Off-by-k Addition

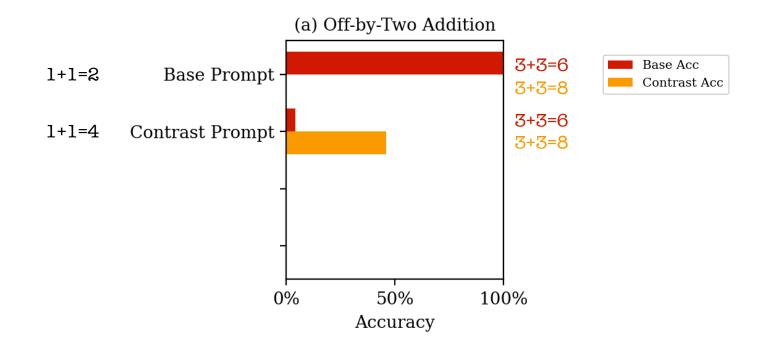
- So far, we've been focusing on off-by-one addition.
- What about *off-by-k* where k=-1, 2 and -2?





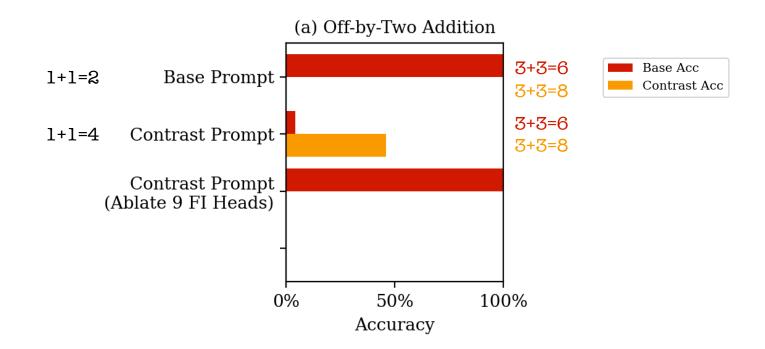
From Off-by-one to Off-by-k Addition

We investigate this with head ablation experiments.



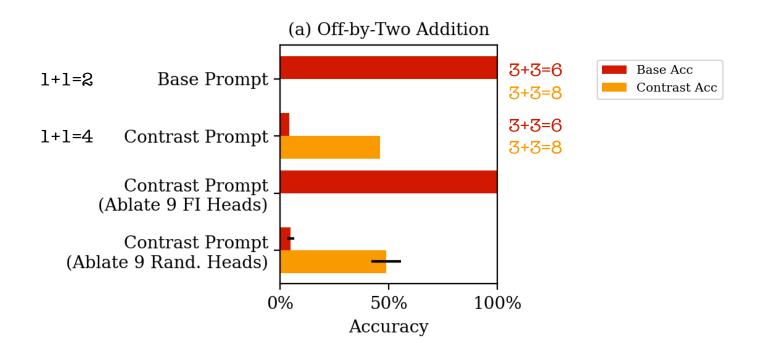
From Off-by-one to Off-by-k Addition

We investigate this with head ablation experiments.



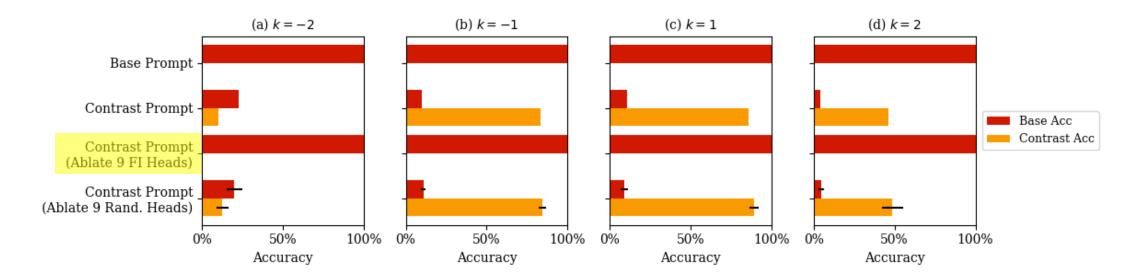
From Off-by-one to Off-by-k Addition

We investigate this with head ablation experiments.



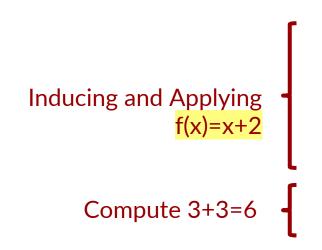
From Off-by-one to Off-by-k Addition

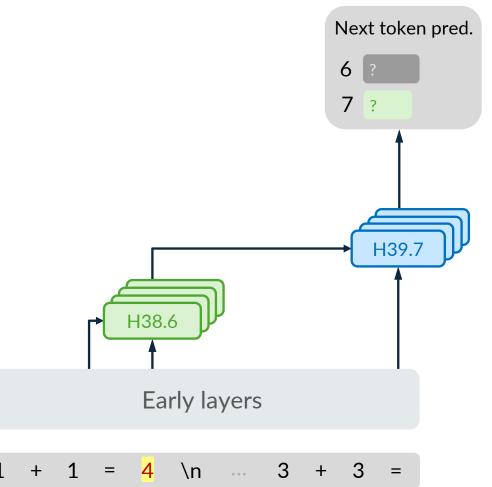
- This observation is consistent with different offsets.
- When FI heads are present, the model performs off-by-k addition non-trivially.
- When FI heads are ablated, the model performs standard addition instead.



From Off-by-k Addition to More

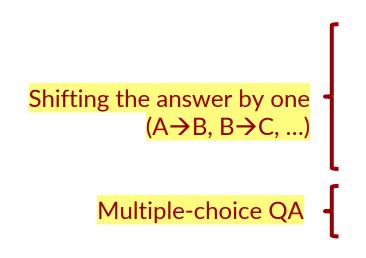
- So far, we've been focusing on off-by-k addition.
- What about something dramatically different?

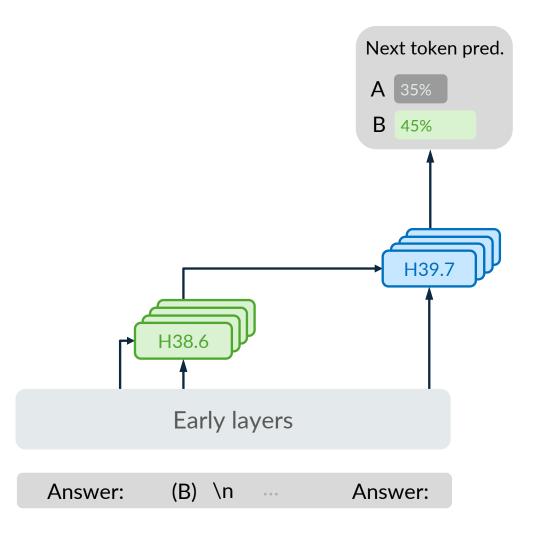




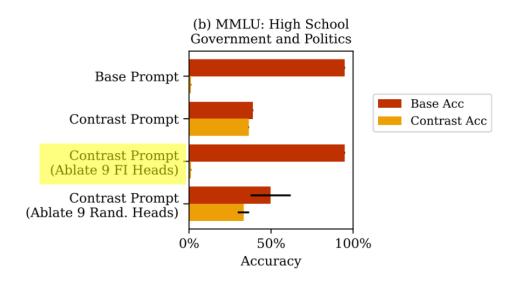
From Off-by-k Addition to More

- So far, we've been focusing on off-by-k addition.
- What about something dramatically different?





- The same set of FI heads are reused in Shifted MMLU.
 - When FI heads are present, the model performs Shift-by-one MMLU.
 - When FI heads are ablated, the model performs Standard MMLU.



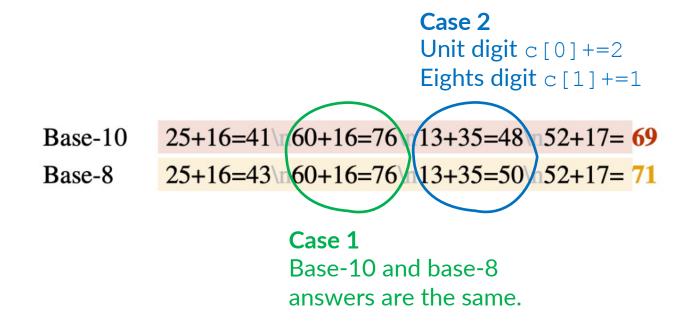
- We tried more tasks! The same set of FI heads are reused in Caesar Cipher and Base-k Addition.
- We took a closer look at base-8 addition.

- We tried more tasks! The same set of FI heads are reused in Caesar Cipher and Base-k Addition.
- We took a closer look at base-8 addition.

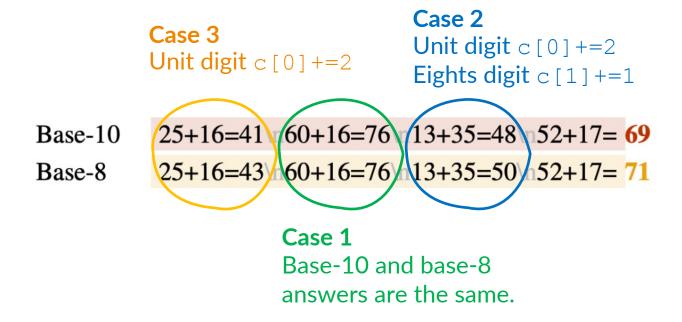
Base-10 and base-8

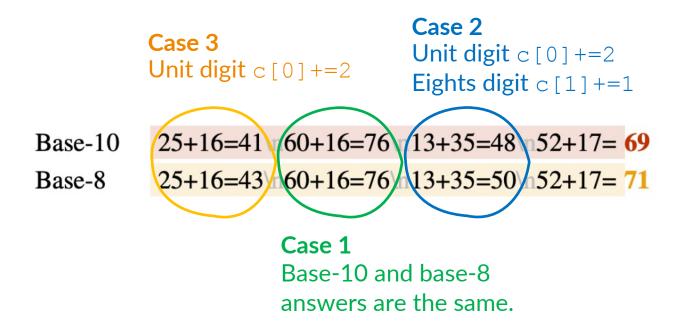
answers are the same.

- We tried more tasks! The same set of FI heads are reused in Caesar Cipher and Base-k Addition.
- We took a closer look at base-8 addition.



- We tried more tasks! The same set of FI heads are reused in Caesar Cipher and Base-k Addition.
- We took a closer look at base-8 addition.

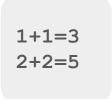


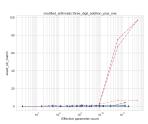


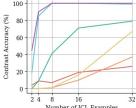
- We generate 100 test examples for each category.
- The model uses FI heads to apply +1 and +2;
- But does not always apply them under the right conditions.

Summary: Function Induction

- We interpret how models perform off-by-one addition.
- LMs implement a complex function induction mechanism.
 - Leveling up from token-level copy-paste induction.
- Function induction heads work collaboratively.
 - Each send out a fraction of "+1", which adds up to the whole "+1" function.
- The function induction mechanism helps task-level generalization broadly.
 - \circ Components in off-by-one addition are reused in off-by-k addition, shifted MMLU, base-k addition ...







How do LMs perform off-by-one addition?

Can models learn unseen tasks with ICL?

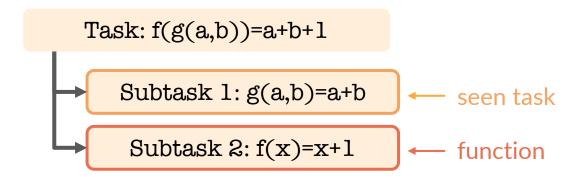
How do LMs handle misinformation?

Why do emergent abilities emerge?

Can models learn unseen tasks with ICL?

- Speculation
 - If an unseen task can be viewed as a seen task + a simple function.
 - The language model may be able to compose them together via in-context learning.

Unseen TaskOff-by-one Addition



How do LMs handle misinformation?

- Speculation
 - Models (investigated in this work) tend to not only follow 1+1=3, but also generalize it to 2+2=5.

Why do emergent abilities emerge?

- Speculation
 - o For two-step tasks, early layers in the LM perform step 1, and late layers perform step 2.
 - Smaller models may not have enough layers (capacity) to develop this sequential structure.

Future directions

How does the function induction mechanism form during pre-training?

- Speculation
 - **FI heads** may evolve from induction heads (Olsson et al., 2022) and function vector heads (Todd et al., 2023).
- It will be interesting to
 - Reproduce our results using an open model (e.g., OLMo 2);
 - Examine the mechanism with intermediate checkpoints;
 - Conduct a study similar to <u>Yin et al., 2025</u>.

Which Attention Heads Matter for In-Context Learning?

Kayo Yin 1 Jacob Steinhardt 1

Future directions

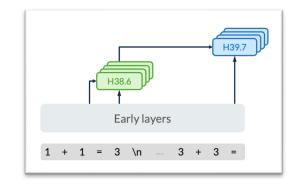
How is function induction reused in naturally-occurring text?

- Our work is currently limited to synthetic tasks and algorithmic tasks.
- It will be interesting to
 - Disable the function induction mechanism in the model;
 - Search for sentences where it has maximal impact.

My PhD Journey

- During my PhD, I worked on cross-task generalization abilities of large language models.
 - Measuring cross-task generalization by training language models across diverse NLP tasks.
 - Predicting cross-task generalization through data-driven modeling and analysis.
 - Deconstructing cross-task generalization by dissecting model internals and uncovering underlying mechanisms.

Model Family	# param	Task	# shot	Perf.
GPT-3	3B	strategy_qa	0	0.48
BIG-G T=1	8B	elementary_math	3	0.19
PaLM	64B	code_line_desc	2	0.23
GPT-3	6B	elementary_math	1	?
Н	ow predict	table are LLM capab	ilities?	



CrossFit (EMNLP 2021)

BIG-bench Analysis (EMNLP Findings 2023)

Function Induction (This Talk; In Submission, 2025)

Thank you!

