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Background: Massive Multi-task Learning

training a model on a multi-task mixture

Train ‘ . "= S q

helpful for tasks seen in the mixture helpful for generalizing to unseen tasks
- . 2
Test ‘ ' “ q Test a —% -8 -
e 1 &» -
Muppet: Aghajanyan et al., 2021 CrossFit: Ye et al., 2021
ExT5: Aribandi et al., 2021 Natural Instructions: Mishra et al., 2021

Meta-Tuning: Zhong et al., 2021
FLAN: Wei et al., 2021
TO: Sanh et al., 2021

Cross-task Generalization
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A potential limitation...

training a model on a multi-task mixture ‘a’
= humans

Train ‘ ' - q
‘ .l decompose and recompose sKkills

|

the same set of weights

for tasks
in different domains

with different complexity p Can we train a model that explicitly emulate this? ]
requiring different skills @/
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Background: Task-level Mixture-of-Experts k- FUSC ASI
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Mixture-of-Experts
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Routing Networks Task-level MoE for Machine Translation Pathways
Rosenbaum et al., 2018 Kudugunta et al., 2021 Google Al Blog, 2021

Barham et al., 2022
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In this work

e We train task-level mixture-of-expert models to multi-task on diverse NLP tasks

o Explicit, Flexible, Interpretable

Task-Level Mixture-of-Experts

Task A Expert Expert Expert Expert
IMDB ¥ 11 N7 21 N\ 31 |\ | 41
/ \\‘r' \
Task B / Expert Expert k Expert \ Expert
QQP | 1.2 9.9 T g™
Task C Expert Expert / Expert Expert
commonsenseQA| "Il 13 [ ™| 23 3.3 43

Does this help multi-task learning?
Does this improve generalization to new tasks?
What is learned by each expert?
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Experiment Setup: Data

CrossFit
(Ye et al., 2021)

Conditional Generation

Summarization

Gigaword (Napoles et al. 2012)

XSum (Narayan et al. 2018) ...
Dialogue

Empathetic Dialog (Rashkin et al. 2019)

KILT-Wow (Dinan et al. 2019) ...

Others (text2SQL, table2text ...)

Classification

Sentiment Analysis

Amazon_Polarity (McAuley et al. 2013)
IMDB (Maas et al. 2011)
Poem_Sentiment (Sheng et al. 2020) ...

Paraphrase Identification

Quora Question Paraphrases (Quora)
MRPC (Dolan et al. 2005)
PAWS (zhang et al. 2019) ...

Natural Language Inference

MNLI (williams et al. 2018)
QNLI (Rajpurkar et al. 2016)
SciTail (Knot et al. 2018) ...

Others (topic, hate speech, ...)

Also tested on P3 dataset (Sanh et al., 2021) '

Random Partition:
120 seen tasks for upstream multitask learning
18 unseen tasks for testing cross-task generalization

Question Answering

Reading Comprehension

SQUAD (Rajpurkar et al. 2016)
QuoRef (Dasigi et al. 2019)
TweetQA (Xiong et al. 2019) ...

Multiple-Choice QA

CommonsenseQA (Talmor et al. 2019)
OpenbookQA (Mihaylov et al. 2018)
Al2_ARC (Clark et al. 2018) ...

Closed-book QA

WebQuestions (Berant et al. 2013)
FreebaseQA (Jiang et al. 2019)
KILT-NQ (Kwiatkowski et al. 2019) ...

Others (yes/no, long-form QA)

e %

'¢ %

o) o

S

Others

Regression

Mocha (Chen et al. 2020)
Yelp Review Full (Yelp Open Datase) ...

Others

Acronym Identification

Sign Language Translation
Autoregressive Entity Linking
Motion Recognition

Pronoun Resolution ...
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Experiment Setup: Model
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Experiment Setup

Data

Random Partition in CrossFit

120 Train Tasks

18 Test Tasks

Train ‘ '?’C.)

Test  Con e | q

5
®

-kﬁz:

Model

WUSC A4Sl

MoE-version of Transformer

Initialized from BART-Base (Lewis et al., 2020)

[ Output Hidden States ]

[ Outp{'utl ] [ Output 2 ] [ Output 3 ]

Transformer Transformer Transformer
Layer Layer Layer
(Expert 1) (Expert 2) (Expert 3)

} } !

Input Hidden States

1 1

[ Selection Function ]

[ Router ]

[ Task Representation ]

Mixture-of-Experts Transformer Layer
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Experiment Setup ik FHUSC AP

Data Model
Random Partition in CrossFit MoE-version of Transformer
120 Tra Expectation Reality rom BART-Base (Lewis et al., 2020)
1 8 TES idden States ] ‘

.
uput2 | [ Output3 |
? 1 |

[ Selection Function ]

nsformer Transformer

Train %l% 3
Layer Layer I

Test i 2 (Expert 3) [ Router ]
h | } )

idden States ] [ Task Representation ]

@lm.l osef rts Transformer Layer Router

https://javascript.plainenglish.io/15-things-all-programmers-can-relate-to-7db1ce811b8
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How to make it work?

USC ASl’

Output Hidden States
0.2 |= Pa“\‘\K
hl 1 L L 1 1 1
Out‘p'ut 1 Output 2 Output 3 o Bl Es 0 0 1 1/3] |1/3| |1/3
7\ 7\ 7\ [ A 4 A
Selection Function Selection Function Selection Function
Transformer Transformer Transformer
Layer Layer Layer + + +
I=gerl) (=mEi =gety Router Router Router
A A A + + *
Input Hidden States Task Representation Task Representation Task Representation

Mixture-of-Experts Transformer Layer

Router

Router

Router

Degenerate to non-MoE transformer
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How to make it work?

Important Factors

Selection

Softmax

Gumbel Softmax

[ Gumbel Softmax w/ |
Straight Through

USC ASI
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4 4

/\\
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Selection Function

A

Two Stage
Batching Two-speed LR Training
Heterogenous Yes Yes
Homogeneous No No
Gumbel Softmax Gumbel Softmax w/ ST \
Add Noise 0.1| |0.8| |0.1 Round up 0 1 0
— P 1 1 — P 1 1

Selection Function

A

Selection Function

A
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How to make it work? ok

USC ASI

Important Factors

Two Stage
Selection Batching Two-speed LR Training
Softmax Heterogenous Yes Yes
Gumbel Softmax Homogeneous No No

[ Gumbel Softmax w/ |

Straight Through
N P gensitive to temperature and its annealing schedule
[ Softmax Gumbel Softmax Gumbel Softmax w/ ST \

——— 1 ——t— { ——]

03| |os| |02 Add Noise 0.1| |0.8| |0.1 Round up 0 1 0

P 1 1 — I 1 1 a—— P 1 1

Selection Function Selection Function Selection Function
A A A
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How to make it work? kB USC iS1

Important Factors

Two Stage
Selection Batching Two-speed LR Training
Softmax Heterogenous Yes Yes
Gumbel Softmax Homogeneous No No
Gumbel Softmax w/
Straight Through
4 )
Heterogenous Homogeneous
:, B =
Batch 1 ‘o,o‘ gﬂ)c& @@@@@
Batch 2 ~§ . -
g aa ' @ 4 Ll an G om am y

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts| Findings of EMNLP 2022



Y
Sz

How to make it work? kB USC iS1

Important Factors

Two Stage
Selection Batching Two-speed LR Training
Softmax Heterogenous Yes Yes
Gumbel Softmax Homogeneous No No
Gumbel Softmax w/
Straight Through
/\ See also Aghajanyan et al., 2021
Heterogenous Homogeneous
:, B =
Batch 1 ‘o,o‘ gﬂ)c& @@@@@
Batch 2 ~ §
S ia ' A0 Gm Lm am am Gm y
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How to make it work?

Important Factors

Selection

Batching

[ Output Hidden States ]

) | |

Transformer Transformer Transformer
Layer Layer Layer
(Expert 1) (Expert 2) (Expert 3)

BIoIa
I 1 1

[ Selection Function ]

|ﬂ Router I
+

[ Input Hidden States ]

[ Task Representation ]

Mixture-of-Experts Transformer Layer

Smaller LR

Router

Larger LR

Two-speed LR

Yes

No

Two Stage
Training

Yes

No
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How to make it work?

Important Factors

Selection

Batching

-~

&

[ Output Hidden States ]

) ’ |

Transformer Transformer Transformer
Layer Layer Layer
(Expert 1) (Expert 2) (Expert 3)

BIoIa
I 1 1

[ Selection Function ]

|ﬂ Router I
+

[ Input Hidden States ]

[ Task Representation ]

Mixture-of-Experts Transformer Layer

Smaller LR

Router

Larger LR /

Two-speed LR

Yes

No

Also pay attention to how
you clip the gradients!

See also Ponti et al., 2022

Two Stage
Training

Yes

No
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How to make it work?

Stage 1 [ Output Hidden States ]

@‘ : ’ Two Stage
Se Output 1 [ Outgut 2 ] [ Output 3 ] 05 ﬁ Tra I n I ng

Selection Function
Transformer Transformer Transformer

Important Factors

Layer Layer Layer
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1 1 1
[ Input Hidden States ] [ Task Representation ]
G um Mixture-of-Experts Transformer Layer Router N (@)
Keep the weights
Gumb And freeze

umby Stage 2 [ Output Hidden States ]
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How to make it work?

Important Factors

Selection Batching
Softmax Heterogenous
Gumbel Softmax Homogeneous

Gumbel Softmax w/
Straight Through

Two-speed LR

Yes

No

Y
Sz
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Two Stage
Training

Yes

No
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How to make it work?

Less Important Factors

Router

MLP
LSTM

Transformer

Task
Representation

Random
Text Embedding

Fisher Information
Task Embedding
(Vu et al., 2020)

Freeze Task
Repre.

Yes

No
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How to make it work?

Less Important Factors

Router

MLP
LSTM

Transformer

Task
Representation

Random
Text Embedding

Fisher Information
Task Embedding
(Vu et al., 2020)

Freeze Task
Repre.

Yes

No
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How to make it work?

Discrepancy Between Loss and Performance

Multi-task Vanilla Baseline Training
3.1 0.60

- 0.55

0.50

T
o
H
w

Loss

o
B
o

Performance

0.35

Loss (Left Axis) Performance (Right Axis)
- —@— BART-Base BART-Base 10.30
-4 BART-Large BART-Large

2-4 T T T T T T
5000 10000 15000 20000 25000 30000

T Training Steps

2.5

0.25

Select model based

' ' ?? Select model
on dev performance

- based on dev loss
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How well does the model perform?

Vanilla Multi-tasking
Random/Avg Task-level Routing
Learned Task-level Routing
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How well does the model perform? ke 5USC ASI

e Multi-task learning on the train set of 120 tasks Vanilla Multi-tasking
Random/Avg Task-level Routing
o Report the average of performance on dev set Learned Task-level Routing

Introducing sparsity naively
will hurt the performance

56
< Surprisingly, randomly
choosing 2 out of 3 experts
_____________________________________ improves performance
o 54
o
S
£
% A 4
b= Sharing all weights may
? 52 limit performance
a
50

BART-Base  Task Random Task Random Avg (3/3)
(1/3) (2/3)
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How well does the model perform? ke 5USC ASE

e Multi-task learning on the train set of 120 tasks Vanilla Multi-tasking
Random/Avg Task-level Routing
o Report the average of performance on dev set Learned Task-level Routing

performance of the best baseline

[ Task-level MoE can match the ]
56

54

52

Dev Set Performance

50
BART-Base Task Random Task Random Avg (3/3) TaskMoE 1 TaskMoE 2
(1/3) (2/3)
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How well does the model perform? ke 5USC ASI

e Multi-task learning on the train set of 120 tasks Vanilla Multi-tasking
Random/Avg Task-level Routing
o Report the average of performance on dev set Learned Task-level Routing

Task-level MoE can match the
performance of the best baseline

56
o 54
O
C
©
£
% It uses less
= computation
2 B2 during inference
A

50

BART-Base Task Random Task Random Avg (3/3) TaskMoE 1 TaskMoE 2
(1/3) (2/3)
Computation 1x 1x 2X 3x 1x 1x
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How well does the model perform? ke 5USC Asl-

e (ross-task generalization to 18 unseen tasks Vanilla Multi-tasking
Random/Avg Task-level Routing
o Report the average of relative performance gain on unseen tasks Learned Task-level Routing
14.00%
%
l\\ .

12.00%
=
©
o
3
8
€ 10.00%
2
(]
o
2
I
2 8.00%

6.00%

BART-Base Task Random  Task Random Avg (3/3) TaskMoE 2
Multitask (1/3) (2/3)
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How well does the model perform?

e (ross-task generalization to 18 unseen tasks Vanilla Multi-tasking
Random/Avg Task-level Routing
o Report the average of relative performance gain on unseen tasks Learned Task-level Routing

Breaking down to each task

100% 0%
3 - direct fine-tuning mmm random 2/3 routing
< 5% 1 mmm muiti-task s avg 3/3 routing : 15% 4
'g mmm random 1/3routing  mem  task-level moe
o 509% 1
= .
2
5 5% 5% -
o
&% ' Ll | I | Ll | | Ll Ll ’10% Ll
: , ; B 0 e ?~ e
A a'LP‘"Ma\-““N "&y’"’e ot oG et et @ e*"\ "°°ve o %50
b S S & o © A
& e W s o O
g @
Avoid negative transfer Also tested on P3 dataset Improve average performance

(Sanh et al., 2021)

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts| Findings of EMNLP 2022


https://arxiv.org/abs/2110.08207

What can we learn from the learned routes?

e Learning Dynamics
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What can we learn from the learned routes?

e Learning Dynamics

Second_Categary First_Categary

= binary = entity linking long-form qa mm= ja  mem paraphrase = slot filling = classification
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What can we learn from the learned routes? ok FHUSC AP
e Learning Dynamics
Developing patterns early on
e Classification ¢ Conditional Generation o Other * QA
(a) Step 3000
LayerO - B 1.0
Layerl - )
Layer2 - 0.8
Layer3 "
Layerd
L:;’z:s N S 0.6
Layer? L 0.4
Layer8
Layer9 -0.2
LayerlO
Layerll 0.0
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What can we learn from the learned routes?

] Lea Nl ng Dyna m|CS e Classification e Conditional Generation o Other QA
(a) Step 3000
Layer0 - 5 1.0
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R ey — S e — —— 0.6
Layer5 4 ey S— s
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Layer7 1 - - e g - — 0.4
Layer8 -
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Loyers £ More fine-grained
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What can we learn from the learned routes? m(c

e How do we interpret these routes?

Manually-defined Features

T™ | T2 | T3 Tn
Extractive? Y 'Y | N Y
Use world knowledge? N N N
Has short input? N | Y | Y N

Nfeatures X Ntasks

Layer0 -
Layerl 1
Layer2
Layer3
Layer4 -
Layer5 A
Layer6 =
Layer7 =

Layer8
Layer9

Layerl0 .»
Layerll A

=S

Learned Routes

(c) Step 60000
i

. '_""‘:m = ?E xS
e e e

Nexperts X Ntasks

— Correlation between features and experts
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What can we learn from the learned routes? ik FHUSC ASE

e How do we interpret these routes? Pearson correlation, p<0.01
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Verified with expert disabling experiments
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Conclusions

e We explored ...
o Adapting transformer models to be task-level mixture-of-expert models

o Training such models to multi-task on diverse NLP tasks

e We found that...
o Some design choices matter a lot
o The resulting models are better at generalizing to unseen tasks

o Learned routes and experts partly align with task characteristics defined by us
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Looking Forward

e Making few-shot learning more computationally efficient

o Explore the area between in-context learning and fine-tuning

e Data Augmentation — Task Augmentation

o From 160 tasks (CrossFit) / 36 tasks (P3) to more “tasks”
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