How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench

Qinyuan Ye

Harvey Yiyun Fu

Xiang Ren



Robin Jia

https://nlp.usc.edu/

New LLM releases!

How are LLMs evaluated?

Model Family Size

Tasks

Model	Size	Code	Commonsense Reasoning	World Knowledge	Reading Comprehens	ion	Math M	MLU BI	BH AGI	Eval				
MPT	7B 30B	20.5 28.9	57.4 64.9	41.0 50.0	5 7. 5					3.5 8.8	#	In-con	text Ex	amples
Falcon	7B 40B	5.6 15.2	56.1 69.2	42.8 56.7			0-shot	Natural 1-shot	Ouestion 5-shot	s 64-shot	0-shot	TriviaO/ 1-shot	A (Wiki) 5-shot	64-shot
Llama 1	7B 13B 33B	14.1 18.9 26.0	60.8 66.1 70.0	46.2 52.6 58.4	MPT	7B 30B 7B	11.6 15.8 15.7	17.8 23.0 18.1	20.8 26.6 21.0	22.7 29.3 24.0	55.7 68.0 52.6	59.6 71.3 56.8	61.2 73.3 64.6	61.6 73.6 61.1
	65B 7B	30.7	63.9	60.5	Falcon	40B	26.3	29 .5	33.5	3 5.5	74.6	78.6	79.9	79.6
Llama 2	7B 13B 34B 70B	16.8 24.5 27.8 37.5	66.9 69.9 71.9	48.9 55.4 58.7 63.6	Llama 1	7B 13B 33B 65B	16.8 20.1 24.9 23.8	18.7 23.4 28.3 31.0	22.0 28.1 32.9 35.0	26.1 31.9 36.0 39.9	63.3 70.1 78.7 81.7	67.4 74.4 80.7 84.5	70.4 77.1 83.8 85.9	71.0 77.9 83.6 86.0
o many	ехр	erim	ent configu	urations!	Llama 2	7B 13B 34B 70B	16.4 16.1 25.1 25.3	22.7 28.0 30.0 33.0	25.7 31.2 32.8 39.5	29.5 34.6 39.9 44.3	65.8 73.1 81.0 82.4	68.9 77.2 83.3 85.0	72.1 79.6 84.5 87.6	73.7 79.4 84.6 87.5

Llama 2: Open Foundation and Fine-Tuned Chat Models (Touvron et al., 2023)

How predictable are large language model capabilities?

LLM User

What model scale should I use?

LLM Developer

What tasks should I prioritize in evaluation?

LLM Researcher

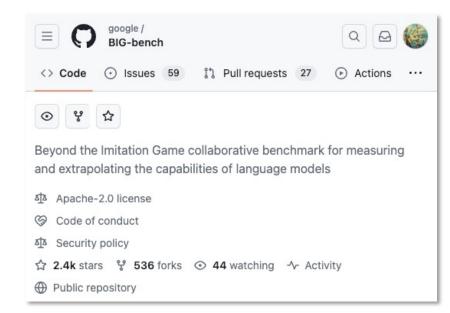
Which capabilities are hard to predict?

• Problem Definition

* limitations apply # Parameters # In-context Examples Normalized $\hat{y} = f(l, n_{param}, t, n_{shot})$ Model Family Tasks

Regression Problem. Evaluated with RMSE and R^2 score.

• Data

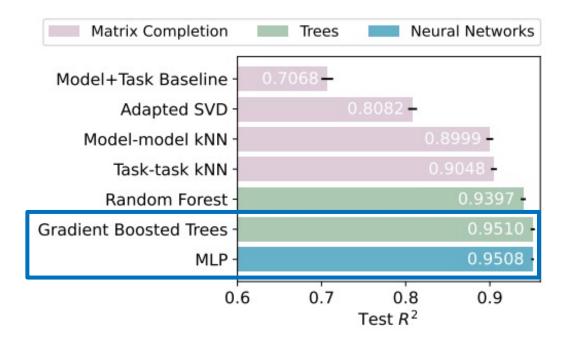


We gathered and filtered the records in **BIG-bench**.

# Experiment Records	56,143				
# Model Families	6				
	BIG-G T=0, BIG-G T=1,				
	BIG-G Sparse, PaLM				
	GPT-3, Gopher				
# Models [†]	51				
# BIG-bench Tasks	134				
# BIG-bench Subtasks [‡]	313				
$\{n_{shot}\}$	$\{0, 1, 2, 3, 5\}$				

We got **56k records** covering diverse models and tasks.

• Results (Random Train-Test Split)

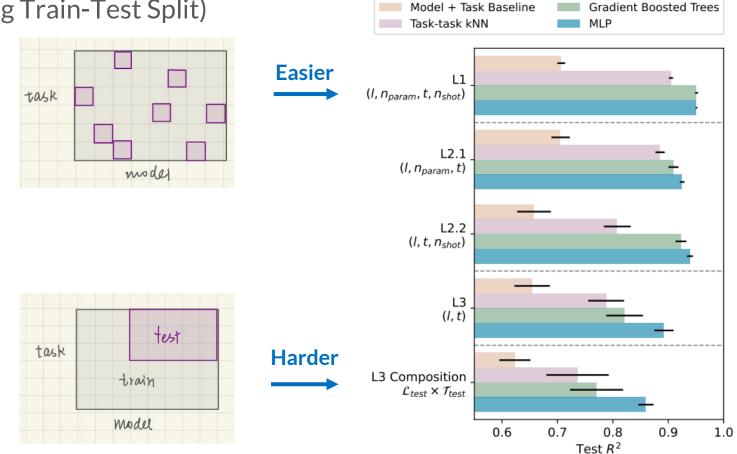


RMSE < 0.05

on average mis-predict by <0.05 when the range is [0,1]

R² > 95% explain more than 95% variance in the target variable

• Results (Challenging Train-Test Split)



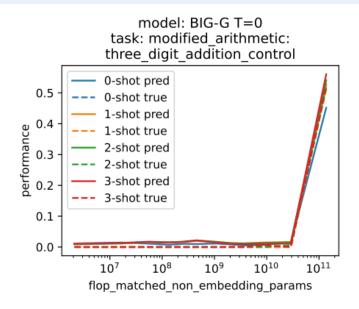
Prediction accuracy decreases when the train-test split becomes more challenging!

Emergent abilities (Wei et al., 2022)

... are in general harder to predict

	RMSE (↓)	R^2 (↑)
Emergent Tasks	0.0541	93.86%
Non-emergent Tasks	0.0496	95.16%
All	0.0499	95.07%

... can be predicted accurately in certain cases



Potential Reason A similar task is emergent and is in the training set.

Part 2: Searching for "small-bench"

• Problem Definition

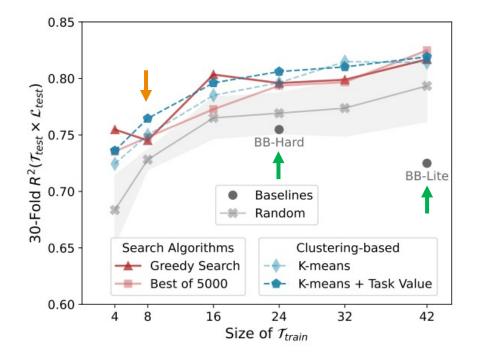
Performance on remaining tasks are *maximally* recovered

$$\begin{array}{l} \operatorname*{arg\,max}_{\mathcal{T}_{train}} \quad R^2(\mathcal{T}_{test} \times \mathcal{L}_{test}) \\ \text{s.t.} \quad \mathcal{T}_{train} \subseteq \mathcal{T}, \quad |\mathcal{T}_{train}| = b \end{array}$$

Select *b* tasks Given an evaluation budget of *b*

Part 2: Searching for "small-bench"

• Results

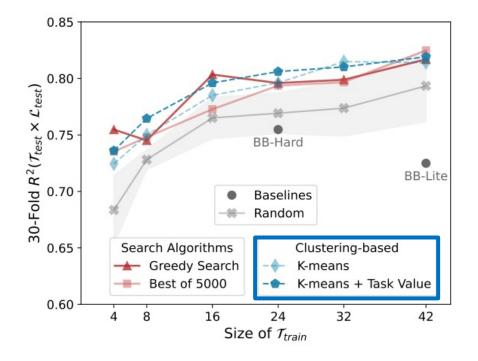


BIG-bench Lite and BIG-bench Hard are suboptimal if the goal is to recover the performance on remaining tasks.

We are able to find subsets that are as informative as BIG-bench Hard while being 3x smaller.

Part 2: Searching for "small-bench"

• Results



K-means

Clustering task representations learned by the MLP predictors in Part 1; Then select tasks close to cluster centroids.

Task Value Estimated from "Best of 5000".

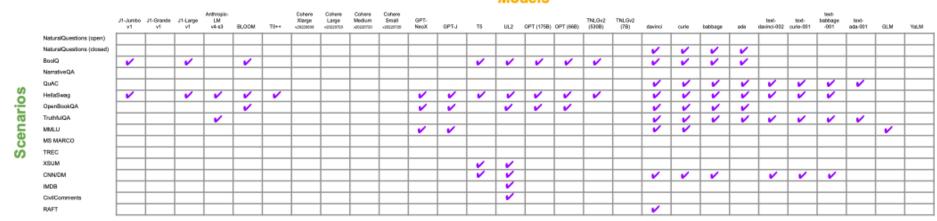
Task diversity and task value are important factors in constructing "small-bench."

Summary

- We gathered **56k LLM experiment records** in BIG-bench.
- We trained models to predict LLM performance on unseen experiment configurations.
 - An MLP predictor can achieve RMSE < 5%, R² > 95% on the random train-test split.
 - Prediction performance changes when train-test distribution changes.
 - Emergent abilities are harder to predict in general, but can be predicted accurately in some cases.
- We searched for **"small-bench,"** a subset of BIG-bench, from which the full BIG-bench performance can be maximally recovered.
 - BIG-bench Lite and BIG-bench Hard are sub-optimal for this purpose.
 - Task diversity and task value are important factors for constructing "small-bench."

Looking Ahead

• Rethinking LLM evaluation



Previous work

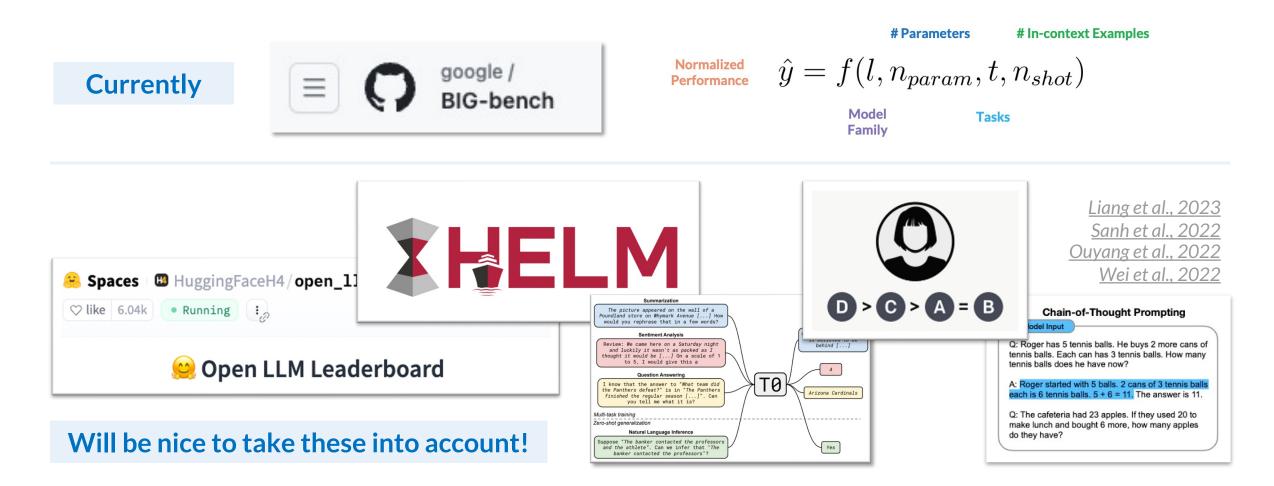
Models

Holistic Evaluation of Language Models (Liang et al., 2023)

Task selection is often heuristic, following past practices, or done arbitrarily.

Looking Ahead

• Broadening observations on LLM capability landscape



Links

- Paper: https://arxiv.org/abs/2305.14947
- Code: <u>https://github.com/INK-USC/predicting-big-bench</u>