# **CrossFit \***: A Few-shot Learning Challenge for Cross-task Generalization

**Qinyuan Ye** qinyuany@usc.edu

Advisor: Prof. Xiang Ren xiangren@usc.edu



Department of Computer Science, University of Southern California. Jan 11, 2022

# **Motivation**



• Humans can learn a new task *efficiently* with only few examples, by leveraging their knowledge obtained when learning prior tasks.

$$\int_{0}^{1} x = \frac{1}{2}(1^{2} - 0^{2}) = \frac{1}{2} \qquad \qquad \int_{1}^{2} x = \frac{1}{2}(2^{2} - 1^{2}) = \frac{3}{2} \qquad \qquad \int_{2}^{3} x = ?$$



Studied **counting**, **arithmetic**, **fraction**, **geometry**, ..., **physics**, **geography**, ... Done a lot of puzzles, brain teasers, crosswords, ...

$$\int_0^1 x = \frac{1}{2}(1^2 - 0^2) = \frac{1}{2} \qquad \qquad \int_1^2 x = \frac{1}{2}(2^2 - 1^2) = \frac{3}{2} \qquad \qquad \int_2^3 x = \frac{1}{2}(3^2 - 2^2) = \frac{5}{2}$$

# **Motivation**



- Humans can learn a new task *efficiently* with only few examples, by leveraging their knowledge obtained when learning prior tasks.
- In this work, we refer to this ability as *cross-task generalization*.
- We explore whether and how such ability can be *acquired*, and further *applied* to build better fewshot learners across *diverse NLP tasks*.



# **Prior Work**

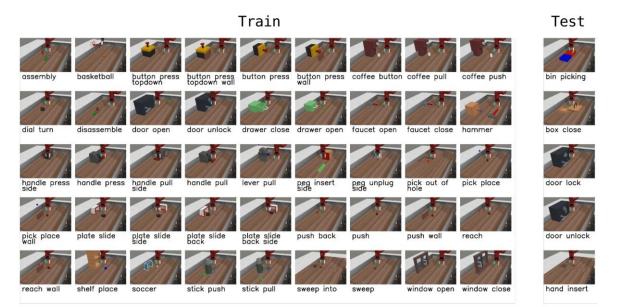


### **Meta-learning in Computer Vision**

#### र जा र द to ł٦ Q 0 d) 14 3 (e) DTD (a) ImageNet (b) Omniglot (c) Aircraft (d) Birds D Œ 🔄 💥 🛲 🐩 <u>م</u> ¢----;; (f) Quick Draw (g) Fungi (h) VGG Flower (i) Traffic Signs (j) MSCOCO

**Meta-Dataset**: A Dataset of Datasets for Learning to Learn from Few Examples Triantafillou et al., 2020

### **Meta-learning in Robotics**



**Meta-World**: A Benchmark and Evaluation for Multi-task and Meta Reinforcement Learning Yu et al., 2019 **Prior Work** 

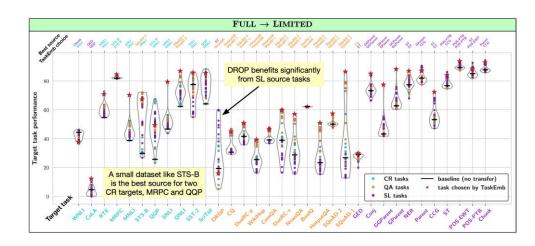


### **Intermediate Task Transfer in NLP**

Supplementary Training on Intermediate Labeled-data Tasks (STILT) (Phang et al., 2018)

| Model                                                               | RTE accuracy |
|---------------------------------------------------------------------|--------------|
| $\mathbf{GPT} \rightarrow \mathbf{RTE}$                             | 54.2         |
| $\textbf{GPT} \rightarrow \textbf{MNLI} \rightarrow \textbf{RTE}$   | 70.4         |
| $\mathbf{GPT} \rightarrow \{\mathbf{MNLI}, \mathbf{RTE}\}$          | 68.6         |
| $\mathbf{GPT} \to \{\mathbf{MNLI}, \mathbf{RTE}\} \to \mathbf{RTE}$ | 67.5         |

Exploring and Predicting Transferability across NLP Tasks (Vu et al., 2020)



Mainly focusing on *one-to-one* transfer: *one* source task, *one* target task

In this work

We are interested in having *multiple source tasks*.

CrossFit 🚏: A Few-shot Learning Challenge for Cross-task Generalization





### **Meta-learning in NLP**

| <b>Few-shot Relation Classification</b> (Han et al., 2018, Gao et al., 2019) | Few-shot Learning Across NL Classification Tasks<br>(Bansal et al., 2020) |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| <b>Train</b> (country, father, director) (residence, characters, instrument) | TrainSST-2, CoLA, MNLI<br>QNLI, QQP, RTE                                  |  |
| <b>Test</b> (creator, cast member, author)                                   | TestSciTail, Amazon Review (Books)                                        |  |
| Tasks are <b>synthetic</b>                                                   | Tasks are drawn from a rather <b>narrow</b> distributio                   |  |

In this work -

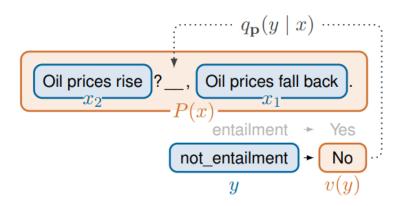
Tasks have *diverse formats and goals*, to simulate the real human learning environment

CrossFit 🐨: A Few-shot Learning Challenge for Cross-task Generalization

# **Prior Work**



### **Few-shot Fine-tuning**



Small Language Models Are Also Few-Shot Learners Schick and Schütze, 2020

### Better Instance-level Generalization

Generalize from a few *seen training instances*, To multiple *unseen test instances*.

### · In this work



### Better Cross-task Generalization

Generalize from several **seen tasks**, To **unseen tasks**. **Prior Work** 



### **Multi-task Pre-finetuning**

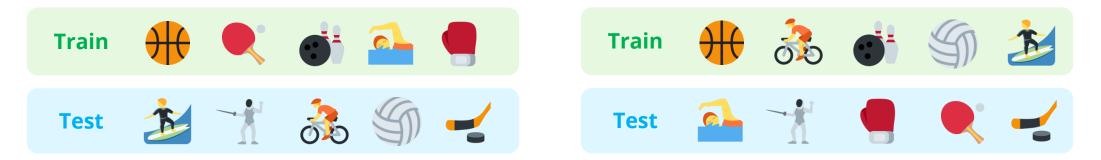


**Muppet** (Aghajanyan et al., 2021)

Test tasks are typically seen during training. Investigating implementation (parallel training and loss scaling)

### In this work -

Train tasks and test tasks are non-overlapping. We are also interested in how different task partitions influence the results.



CrossFit 🚏: A Few-shot Learning Challenge for Cross-task Generalization



## Defining "Tasks"

- The meaning of "task" is overloaded. "Tasks" can be categorized at different granularity.
  - Classification vs. QA
  - Yes/No QA vs. machine reading comprehension
  - QA in science domain vs. QA in news domain
- We take a general formulation by defining a "task" with its training and testing examples.
  - i.e., A task T is a tuple of  $(D_{train}, D_{dev}, D_{test})$

Task 
$$D_{train}$$
  $D_{dev}$   $D_{test}$ 



### Defining "Tasks"

- We're interested in cross-task generalization -- generalization to novel tasks.
- We need to partition all tasks into seen tasks and unseen tasks.

| Seen                                                                                                                              | Development                                                    | Unseen                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Train Tasks T <sub>train</sub>                                                                                                    | Dev Tasks T <sub>dev</sub>                                     | Test Tasks T <sub>test</sub>                                   |
| Task 1     D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> Task 4     D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> | Task 1   D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> | Task 1   D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> |
| Task 2 $D_{train}$ $D_{dev}$ $D_{test}$ Task 5 $D_{train}$ $D_{dev}$ $D_{test}$                                                   | Task 2 $D_{train}$ $D_{dev}$ $D_{test}$                        | Task 2 $D_{train}$ $D_{dev}$ $D_{test}$                        |
| Task 3     D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> Task 6     D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> | Task 3   D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> | Task 3   D <sub>train</sub> D <sub>dev</sub> D <sub>test</sub> |





### **Prevalent Pipeline**

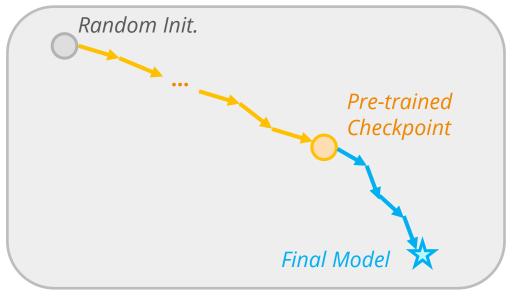
Large-scale Pre-training

+ Downstream Fine-tuning

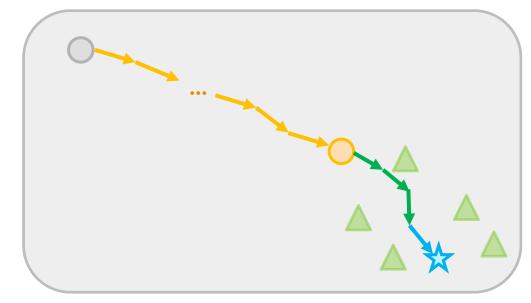
### In our CrossFit 🚏 Setting

### Large-scale Pre-training

- + Upstream Learning on a set of seen tasks  $\triangle \triangle \triangle$
- + Downstream Fine-tuning on an unseen target task 🗙



Parameter Space



Parameter Space



### • Evaluation Metric

- We define *Average Relative Gain* (ARG), to measure the overall performance gain on all unseen tasks.
- ARG is the relative performance changes before and after the upstream learning stage for each test task, and averaged across all test tasks.
- *This is not a perfect metric*, but it helps us to get a general sense. We still plot and report relative gain for individual tasks.

| Exan | nple   |           |               | (40%-2    | 25%)/2=7.5% |
|------|--------|-----------|---------------|-----------|-------------|
|      |        | Direct FT | Upstream + FT | Rel. Gain | ARG         |
|      | Task A | 50% F1    | 70% F1        | 40%       | 7.5%        |
|      | Task B | 40% Acc.  | 30% Acc.      | -25%      | 7.5%        |

# **Tasks and Partitions**



- To instantiate different settings in **CrossFit** 🚏 and facilitate in-depth analysis ...
- We present **NLP Few-shot Gym**  $\diamondsuit$ , a repository of **160 diverse few-shot NLP tasks**.
  - Gathered from open-source datasets on Hugging Face Datasets Ο
  - Converted to a **unified text-to-text format** 0

- 16 examples per class for classification tasks; 32 examples for other tasks Ο
- **<u>Reproducible</u>** with our released code (<u>https://github.com/INK-USC/CrossFit</u>)  $\bigcirc$



|                                                                         | Classification                                                                             | Question Answering                                                                                       |                                                                                      |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                         | Sentiment Analysis                                                                         | Reading Comprehension                                                                                    |                                                                                      |
|                                                                         | Amazon_Polarity (McAuley et al. 2013)                                                      | SQUAD (Rajpurkar et al. 2016)                                                                            |                                                                                      |
| <b>Conditional Generation</b>                                           | IMDB (Maas et al. 2011)<br>Poem_Sentiment (Sheng et al. 2020)                              | QuoRef (Dasigi et al. 2019)<br>TweetQA (Xiong et al. 2019)                                               | Others                                                                               |
| Summarization                                                           | Paraphrase Identification                                                                  | Multiple-Choice QA                                                                                       | Regression                                                                           |
| Gigaword (Napoles et al. 2012)<br>XSum (Narayan et al. 2018)            | Quora Question Paraphrases (Quora)<br>MRPC (Dolan et al. 2005)<br>PAWS (Zhang et al. 2019) | CommonsenseQA (Talmor et al. 2019)<br>OpenbookQA (Mihaylov et al. 2018)<br>AI2_ARC (Clark et al. 2018)   | Mocha (Chen et al. 2020)<br>Yelp Review Full (Yelp Open Dataset)                     |
| Dialogue                                                                | Natural Language Inference                                                                 | Closed-book QA                                                                                           | Others                                                                               |
| Empathetic Dialog (Rashkin et al. 2019)<br>KILT-Wow (Dinan et al. 2019) | MNLI (Williams et al. 2018)<br>QNLI (Rajpurkar et al. 2016)<br>SciTail (Knot et al. 2018)  | WebQuestions (Berant et al. 2013)<br>FreebaseQA (Jiang et al. 2019)<br>KILT-NQ (Kwiatkowski et al. 2019) | Acronym Identification<br>Sign Language Translation<br>Autoregressive Entity Linking |
| Others (text2SQL, table2text)                                           | Others (topic, hate speech,)                                                               | Others (yes/no, long-form QA)                                                                            | Motion Recognition<br>Pronoun Resolution                                             |



#### CrossFit 📅: A Few-shot Learning Challenge for Cross-task Generalization

# **Tasks and Partitions**



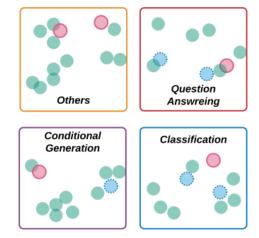
• Partitions of train/dev/test tasks

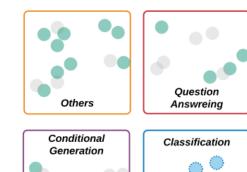
🔵 Training Task 🛛 🌞 Dev

💮 Dev Task 🛛 🔵 Test Task

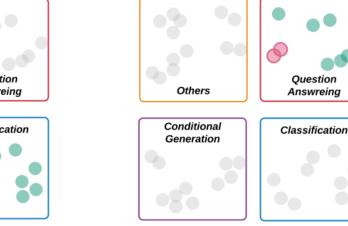
Unused Task

The locations and distances in these figures are hypothetical and for illustrative purposes only.





Others Conditional Generation Classification



**Partition 1: Random** Randomly split 160 tasks into 120/20/20 for train/dev/test tasks.

### **Partition 2.1: 45non-class** Train: 45 non-classification tasks Dev/Test: 10 classification tasks

**Partition 3.1: Held-out-NLI** Train: 57 non-NLI classification tasks Test: 8 NLI tasks **Partition 4.1: Held-out-MRC** Train: 42 non-MRC QA Tasks Test: 9 MRC QA tasks

### Here we present 4 partitions. We have 8 in total in the paper.

# **Experiments**



- We mainly use **BART-Base** (Lewis et al., 2020) as the main model for our analysis.
  - Also we verify some of our findings with **BART-Large** and **T5-v1.1-Base** (Raffel et al., 2019)
- These are off-the-shelf transformer models, pre-trained on large corpus with masked language modeling or similar objectives.

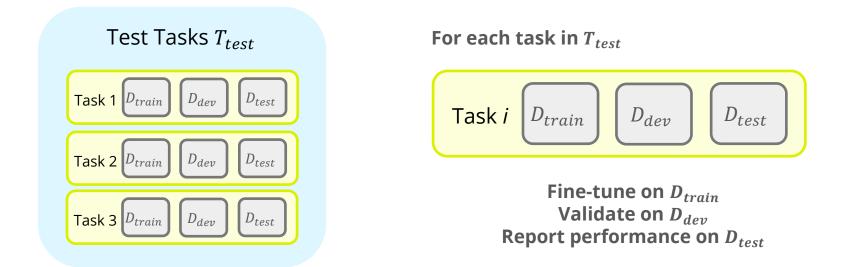
| Original text                                      |
|----------------------------------------------------|
| Thank you for inviting me to your party last week. |
| Inputs                                             |
| Thank you <x> me to your party <y> week.</y></x>   |
| Targets                                            |
| <x> for inviting <y> last <z></z></y></x>          |
|                                                    |

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Raffel et al., 2019

# **Experiments**



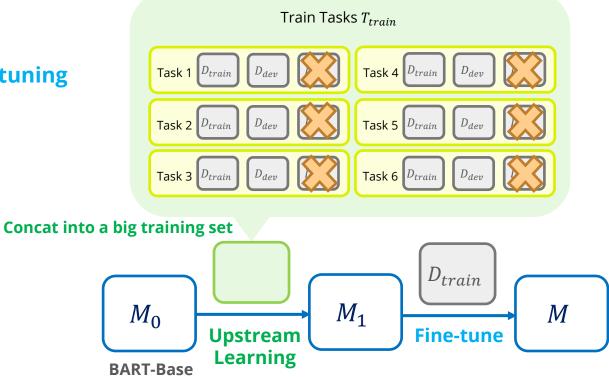
- We mainly use **BART-Base** (Lewis et al., 2020) as the main model for our analysis.
  - Also we verify some of our findings with **BART-Large** and **T5-v1.1-Base** (Raffel et al., 2019)
- Methods
  - **Downstream Fine-tuning** (also used as the baseline for computing ARG)



#### CrossFit 🚏: A Few-shot Learning Challenge for Cross-task Generalization

# Experiments

- We mainly use **BART-Base** (Lewis et al., 2020) as the main model for our analysis.
  - Also we verify some of our findings with **BART-Large** and **T5-v1.1-Base** (Raffel et al., 2019)
- Methods
  - Downstream Fine-tuning
  - Upstream Learning then Downstream Fine-tuning
    - Multi-task Learning





#### CrossFit 📅: A Few-shot Learning Challenge for Cross-task Generalization

with MAML

# 18

# **Experiments**

- We mainly use **BART-Base** (Lewis et al., 2020) as the main model for our analysis.
  - Also we verify some of our findings with **BART-Large** and **T5-v1.1-Base** (Raffel et al., 2019) 0
- Methods
  - **Downstream Fine-tuning**  $\bigcirc$
  - **Upstream Learning then Downstream Fine-tuning** 0
    - Multi-task Learning
    - Model Agnostic Meta-learning (Finn et al., 2017)

Train Tasks T<sub>train</sub> D<sub>train</sub> Task 4 D<sub>train</sub> Task 1  $D_{dev}$  $D_{dev}$ Task 5 D<sub>train</sub> Task 2 D<sub>trat</sub>  $D_{dev}$ Task 6 D<sub>train</sub> Task 3 D<sub>train</sub>  $D_{dev}$  $B_{support}$ Bquery One update in  $M_f$  $M_0$ upstream learning Loss Optimize **Evaluate** Optimize



# **Experiments**



- We mainly use **BART-Base** (Lewis et al., 2020) as the main model for our analysis.
  - Also we verify some of our findings with **BART-Large** and **T5-v1.1-Base** (Raffel et al., 2019) 0
- Methods
  - **Downstream Fine-tuning**  $\bigcirc$
  - **Upstream Learning then Downstream Fine-tuning** 0
    - Multi-task Learning
    - Model Agnostic Meta-learning (Finn et al., 2017)

 First-order MAML
 Variants of MAML

 Reptile (Nichol et al., 2017)
 Variants of MAML

# **Quick Summary**



### NLP Few-shot Gym 🗞

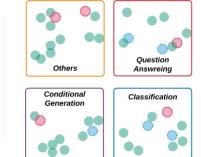
- Gather **160 diverse few-shot tasks** in text-to-text format
- Manually classify the tasks into categories and subcategories.
- Design **8 partitions** of the tasks to test cross-task generalization in different scenarios

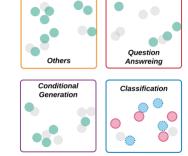
### CrossFit 🍟 Setting

### Large-scale Pre-training

- + Upstream Learning on a set of seen tasks (*T*<sub>train</sub>)
- + Downstream Fine-tuning on an unseen target task (T<sub>test</sub>)









Using **multi-task learning** and **meta-learning** methods (e.g., MAML, Reptile)

Parameter Space



### • Q1. Can we teach pre-trained LMs to generalize across tasks with an upstream learning stage?

| No. | Shorthand       | ARG(Multi) | ARG(MAML) | ARG(FoMAML) | ARG(Rept.) |
|-----|-----------------|------------|-----------|-------------|------------|
| 1   | Random          | 35.06%     | 28.50%    | 22.69%      | 25.90%     |
| 2.1 | 45cls           | 11.68%     | 9.37%     | 10.28%      | 13.36%     |
| 2.2 | 23cls+22non-cls | 11.82%     | 9.69%     | 13.75%      | 14.34%     |
| 2.3 | 45non-cls       | 11.91%     | 9.33%     | 11.20%      | 14.14%     |
| 3.1 | Held-out-NLI    | 16.94%     | 12.30%    | 12.33%      | 14.46%     |
| 3.2 | Held-out-Para   | 18.21%     | 17.90%    | 21.57%      | 19.72%     |

#### **Evidence 1**

ADC (defined earlier) is **nesitive** for all 9

#### Evidence 2

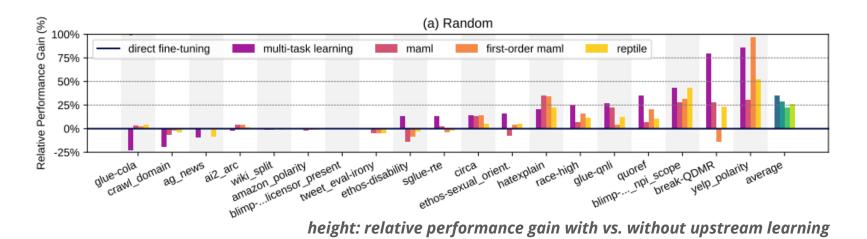
When we aggregate test tasks performance gain from all upstream learning methods and partitions...

|   | >5% relative gain  | 51.47% |
|---|--------------------|--------|
| - | within ±5%         | 35.93% |
| ₽ | <-5% relative gain | 12.60% |

### Yes! Upstream learning methods do help pre-trained LMs to acquired cross-task generalization!



### • Q1. Can we teach pre-trained LMs to generalize across tasks with an upstream learning stage?



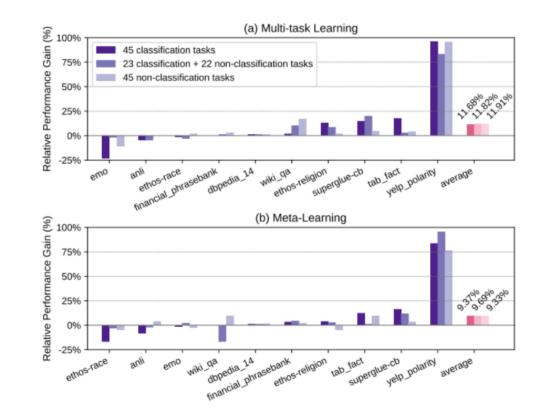


- Correlated Performance Gains
  - Tasks that benefit from one upstream method are likely to also benefit from another upstream learning method.
- Multi-task learning is a strong baseline
  - Outperforms in meta-learning algorithms in most settings. We suspect complex optimization for transformer models is too challenging.
- Forgetting Pre-Trained Knowledge
  - Tasks that resemble the pre-training objective (masked language modeling) is likely to get negative performance gain after upstream learning.



### • Q2. "Well-rounded" or "specialized"? How to select tasks during upstream learning?

- We conduct *controlled experiments* by fixing the test tasks to be 10 classification tasks.
- The upstream tasks are
  - 100% classification tasks
  - 50% classification + 50% non-classification tasks
  - 100% non-classification tasks
- Classification tasks and non-classification tasks seem to be equivalently helpful.
- Our understanding of tasks may not align with how models learn transferable skills.





• Q3. Does it help if we have more labelled data for *upstream* tasks?

- In previous experiments, we limit the number of examples in each upstream task
  - Classification tasks: 16 examples per class
  - Non-classification tasks: 32 examples
- We experiment with using **2x**, **4x**, **8x** data in *upstream* task ...
- We find that the effect from using more upstream data is inconsistent on different target tasks.
- More examples in each upstream task does not necessarily lead to better cross-task generalization.



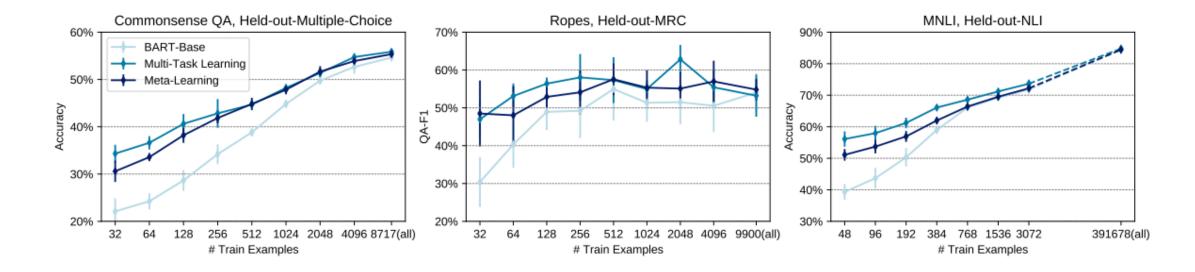
2021), it is shown that the <u>number of</u> tasks is critical.

CrossFit 🚏: A Few-shot Learning Challenge for Cross-task Generalization

# **More Findings**



• Q4. From Few-shot to More-shot: Does the improved cross-task generalization ability go beyond few-shot settings?

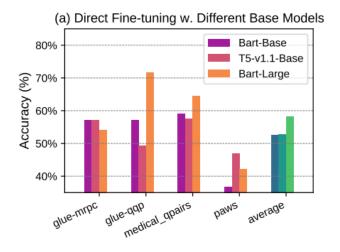


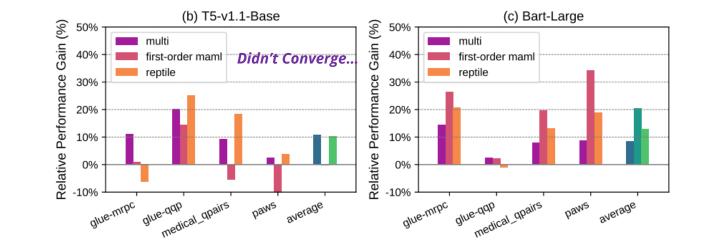
- Cross-task generalization helps *most* on CommonsenseQA, ROPES and MNLI.
- On these three datasets, the **benefits** brought by upstream learning methods **extend into medium resource cases** with up to 2048 training examples.

# **More Findings**



• Q5. Can we further improve few-shot performance by using different/larger pre-trained models?





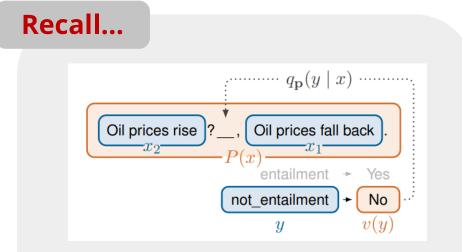
Larger pre-trained LMs are better few-shot learners by themselves.

They still benefit from acquiring cross-task generalization via upstream learning

# **More Findings**

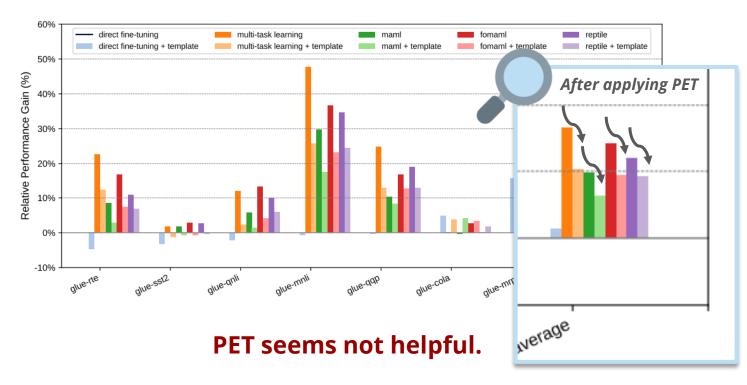


• Q6. Can we use pattern-exploiting training (PET) to replace direct fine-tuning and achieve even better performance?



Small Language Models Are Also Few-Shot Learners Schick and Schütze, 2020

### **Pattern-exploiting Training (PET)**



Perhaps PET is not directly applicable to auto-regressive models? Perhaps there is a mis-match in format? During upstream learning tasks are not in cloze-style.

# Conclusions



- We introduced ...
  - **CrossFit \***, a task setup which aims at building few-shot learners that generalize across diverse NLP tasks.
  - **NLP Few-shot Gym**  $\diamondsuit$ , a repository of 160 NLP tasks gathered from existing open-access datasets.
- We found that ...
  - **Upstream learning methods** such as multi-task learning and meta-learning help pre-trained LMs to **acquired cross-task generalization**.
  - Task similarity in terms of task format *does not* align with how models learn transferable skills.
  - More labelled data for upstream tasks *does not* necessarily lead to better cross-task generalization ability.

# **Future Work**



- We envision the CrossFit P Challenge and the NLP Few-shot Gym S to serve as the testbed for many interesting "meta-problems"
  - Generating Prompts? (<u>Shin et al., 2020</u>; <u>Gao et al., 2020</u>)
  - Select appropriate upstream tasks? (Zamir et al., 2018; Standley et al., 2020; Vu et al., 2020)
  - Apply task augmentation? (<u>Murty et al., 2021</u>)
  - Continual Learning? (<u>Jin et al., 2021</u>)
  - Task decomposition? (<u>Andreas et al., 2016</u>; <u>Khot et al., 2021</u>)





### **Reducing human annotation efforts in NLP**

