Learning from Observations of Large Language Model Capabilities

Qinyuan Ye University of Southern California

Nov 28, 2023

About me

- Qinyuan Ye 叶沁媛
 - Fifth-year PhD student at USC NLP
 - Advised by Professor Xiang Ren
- I want to build intelligent NLP systems that are versatile (adapt quickly) and curious (learn autonomously).
 - Supervision signals: explanations and instructions
 - Learning paradigms: meta-learning and self-improving
- Recently, I'm also interested in understanding large language models capabilities scientifically.
 - This talk!

New LLM releases!

LLMs can do so many things!

GPT-4 Blogpost (https://openai.com/research/gpt-4)

Learning from Observations of Large Language Model Capabilities

LLMs can do so many things!

LLMs can do so many things!

I'm traveling to Singapore tomorrow. Create a 5 day itinerary suitable for a PhD student in Science.

- / Searching for: 5 day itinerary for PhD student in Computer Science in Singapore
- Searching for: PhD in Computer Science Singapore
- / Searching for: PhD in Computer Science Singapore part-time
- Searching for: PhD Study in Singapore 2024
- / Generating answers for you...

Certainly! Singapore is a vibrant city-state with a rich blend of culture, technology, and green spaces. As a PhD student in Computer Science, you'll appreciate the academic environment and t opportunities for exploration. Here's a 5-day itinerary tailored to your interests:

Day 1: Arrival and Exploration

AtGPT Designed Cocktails

Quantum Byte Vodka Splash Doen Vodka, Bius Cureçeo, time, simple synup, and a splash of club social

Neural Network Negroni Old Pail Road Wriskey Campan, MSR Sweet Vermouth with a filamed roser stange genus.

Wine Meters Dardsmay Downdrum Reit Bland

(<u>Source</u>)

You

how to create two tables side by side in latex

5

ChatGPT

To create two tables side by side in LaTeX, you can use the `minipage` environment to encapsulate each table. The `minipage` environment allows you to create "mini-pages" side by side, and within each of those, you can place a table. Here's an example:

Elon Musk 🗢 🛛 @elonmusk

Subscribe

I asked Grok to write a poem about love

In love, we find a universe aglow, A cosmic dance of hearts that ebb and flow. It lifts us up, like stars that gently rise, A symphony of souls that gently harmonize.

With love, we soar on wings of purest light, A journey through the cosmos, oh so bright. It fills our hearts, like galaxies ablaze, A never-ending story, in infinite ways.

They also fail in unexpected ways...

3.3.3

We have limited understanding of what LLMs are (not) capable of.

Can we learn from our observations of LLM capabilities?

And use our findings to assist future LLM research and development?

Learning from Observations of Large Language Model Capabilities

How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench

When new LLMs are released, how are they evaluated?

Model Family Size

Tasks

Model	Size	Code	Commonsense Reasoning	World Knowledge	Rea Con	ding nprehens	ion	Math M	MLU I	BBH	AGI	Eval				
MPT	7B 30B	20.5 28.9	57.4 64.9	41.0 50.0	ſ	57.5 64 7		4.9 2 9 1	26.8 46 9	31.0 38.0	23	.5 8		# In-con	text Ex	amples
Falcon	7B 40B	5.6 15.2	56.1 69.2	42.8 56.7				0-shot	Natura 1-sho	alOue t 5-a	stion shot	s 64-shot	0-shc	TriviaO ot 1-shot	A (Wiki) 5-shot	64-shot
Llama 1	7B 13B 33B	14.1 18.9 26.0	60.8 66.1 70.0	46.2 52.6 58.4		MPT	7B 30B	11.6 15.8	17.8 23.0	2	0.8 6.6	22.7 29.3	55.7 68.0	59.6 71.3	61.2 73.3	61.6 73.6
	65B	30.7	70.7	60.5		Falcon	7B 40B	15.7 26.3	18.1 29.5	2 3	1.0 3.5	24.0 35.5	52.6 74.6	56.8 78.6	64.6 79.9	61.1 79.6
Llama 2	7B 13B 34B 70B	16.8 24.5 27.8 37.5	63.9 66.9 69.9 71.9	48.9 55.4 58.7 63.6		Llama 1	7B 13B 33B 65B	16.8 20.1 24.9 23.8	18.7 23.4 28.3 31.0	2 2 3 3	2.0 8.1 2.9 5.0	26.1 31.9 36.0 39.9	63.3 70.1 78.7 81.7	67.4 74.4 80.7 84.5	70.4 77.1 83.8 85.9	71.0 77.9 83.6 86.0
many experiment configurations!						Llama 2	7B 13B 34B 70B	16.4 16.1 25.1 25.3	22.7 28.0 30.0 33.0	2 3 3 3	5.7 1.2 2.8 9.5	29.5 34.6 39.9 44.3	65.8 73.1 81.0 82.4	68.9 77.2 83.3 85.0	72.1 79.6 84.5 87.6	73.7 79.4 84.6 87.5

Llama 2: Open Foundation and Fine-Tuned Chat Models (Touvron et al., 2023)

Learning from Observations of Large Language Model Capabilities

How predictable are large language model capabilities?

LLM User

What model scale should I use?

LLM Developer

What tasks should I prioritize in evaluation?

LLM Researcher

Which capabilities are hard to predict?

• Problem Definition

* limitations apply # Parameters # In-context Examples Normalized $\hat{y} = f(l, n_{param}, t, n_{shot})$ Model Tasks

Family

Regression Problem. Evaluated with RMSE and R^2 score.

Learning from Observations of Large Language Model Capabilities

• Data

We gathered and filtered the records in **BIG-bench**.

# Experiment Records	56,143					
# Model Families	6 BIG-G T=0, BIG-G T=1, BIG-G Sparse, PaLM GPT-3, Gopher					
# Models [†]	51					
# BIG-bench Tasks # BIG-bench Subtasks [‡]	134 313					
$\{n_{shot}\}$	$\{0, 1, 2, 3, 5\}$					

We got **56k records** covering diverse models and tasks.

• Results (Random Train-Test Split)

RMSE < 0.05

on average mis-predict by <0.05 when the range is [0,1]

R^2 > 95% explain more than 95% variance in the target variable

• Controlled Analysis

We split test set into groups and report the performance in each group.

• Controlled Analysis

We control what the training set contains.

• Controlled Analysis

Performance of larger models is harder to predict.

• Controlled Analysis

Trained on ... Single-group (1000 Examples) Single-group (All Examples) Multi-group (All Examples)

Multi-group training is always helpful.

• Controlled Analysis

Some groups benefit more from multi-group training.

Some groups are intrinsically harder to predict.

Least
Predictable
Tasks

• Results (Challenging Train-Test Split)

Prediction accuracy decreases when the train-test split becomes more challenging!

Learning from Observations of Large Language Model Capabilities

Emergent abilities (Wei et al., 2022)

... are in general harder to predict

	RMSE (↓)	R^2(↑)
Emergent Tasks	0.0541	93.86%
Non-emergent Tasks	0.0496	95.16%
All	0.0499	95.07%

... can be predicted accurately in certain cases

Potential Reason A similar task is emergent and is in the training set.

Learning from Observations of Large Language Model Capabilities

Part 2: Searching for "small-bench"

• Problem Definition

Performance on remaining tasks are *maximally* recovered

$$\begin{array}{l} \operatorname*{arg\,max}_{\mathcal{T}_{train}} \quad R^2(\mathcal{T}_{test} \times \mathcal{L}_{test}) \\ \text{s.t.} \quad \mathcal{T}_{train} \subseteq \mathcal{T}, \quad |\mathcal{T}_{train}| = b \end{array}$$

Select *b* tasks Given an evaluation budget of *b*

Part 2: Searching for "small-bench"

• Results

BIG-bench Lite and BIG-bench Hard are suboptimal if the goal is to recover the performance on remaining tasks.

We are able to find subsets that are as informative as BIG-bench Hard while being 3x smaller.

Part 2: Searching for "small-bench"

• Results

K-means

Clustering task representations learned by the MLP predictors in Part 1; Then select tasks close to cluster centroids.

Task Value Estimated from "Best of 5000".

Task diversity and task value are important factors in constructing "small-bench."

Summary

- We gathered **56k LLM experiment records** in BIG-bench.
- We trained models to predict LLM performance on unseen experiment configurations.
 - An MLP predictor can achieve RMSE < 5%, R^2 > 95% on the random train-test split.
 - Prediction performance changes when train-test distribution changes.
 - Emergent abilities are harder to predict in general, but can be predicted accurately in some cases.
- We searched for **"small-bench**," a subset of BIG-bench, from which the full BIG-bench performance can be maximally recovered.
 - BIG-bench Lite and BIG-bench Hard are sub-optimal for this purpose.
 - Task diversity and task value are important factors for constructing "small-bench."

Looking Ahead

• Rethinking LLM evaluation

Previous work

Models

Holistic Evaluation of Language Models (Liang et al., 2023)

Task selection is often heuristic, following past practices, or done arbitrarily.

Looking Ahead

• Broadening observations on LLM capability landscape

Estimating Large Language Model Capabilities without Labeled Test Data

The Promises of Few-shot Learning

I only need 16 annotated examples!

To know whether the LLM works well for my task, I need to annotate 1000 examples for testing...

Can we estimate LLM capabilities without labeled test data?

https://javascript.plainenglish.io/15-things-all-programmers-can-relate-to-7db1ce811b8

Learning from Observations of Large Language Model Capabilities

Estimating Large Language Model Capabilities without Labeled Test Data

• We can gain insights from model confidence / calibration.

Language Models (Mostly) Know What They Know (Kadavath et al., 2022)

Estimating Large Language Model Capabilities without Labeled Test Data

• Our proposed method

• Training a meta-model that estimates performance based on **confidence profiles**.

Confidence Profiles

• Compute the confidence score for each test example

$$\text{Closed-set Generation} \quad s^{M,c}(x) = \frac{p_{\hat{y}}}{\sum_{\tilde{y} \in \mathcal{Y}} p_{\tilde{y}}} \quad \text{ Open-ended Generation } \quad s^{M,c}(x) = -\sum_{t=1}^{|\hat{y}|} \log p_t(\hat{y}_t).$$

• Collect confidence distributions and extract the percentile vector

Get model confidence at 5%, 10%, ...,
95% percentile of the distribution.

2. Use this vector as the input feature to the meta-model.

• Train a meta-model to output dataset-level accuracy based on the percentile vector

Experiment Settings

- Getting the observations of LLM performance
 - **3 Tasks**: MMLU (57 subtasks), MCQA (21 subtasks), CBQA (13 subtasks)
 - **4 LLMs**: OPT 6.7B, OPT 13B, LLaMA 7B, LLaMA 13B
 - **12 settings** in total (3 tasks x 4 LLMs), **42,360 ICL performance observations** in total
- For each setting, run cross-validation on the observations
 - Training the meta-model on some subtasks
 - Estimate the accuracy on unseen subtasks

Compared Methods

- Meta-models (ours)
 - We consider **k-NN**, **MLP**, **XGBoost** models for regression
- Baselines
 - **Train Avg**: use average accuracy on seen subtasks as estimated accuracy.
 - Avg Confidence: use average confidence on test examples as estimated accuracy.
 - **Temperature Scaling**: scale the confidence with an extra temperature parameter; fit it on the training set.
- Oracles
 - **Oracle** *k*: assuming we have *k* annotated test examples, use model accuracy on these *k* examples as estimation of accuracy on the full test set.
 - *k*=4, 8, 16, 32, 64

Meta Models (ours) Baselines Oracles (lines)

Results

On average, meta-model estimations are as accurate as having 40 labeled test examples.

Learning from Observations of Large Language Model Capabilities

Results

Summary

- We formalize the problem of **few-shot ICL accuracy estimation**.
 - Given a handful of labeled in-context examples and a set of unlabeled test examples, our goal is to estimate the overall accuracy of ICL on these test examples
- We propose to address this problem by **training a "meta-model,"** which takes in the LLM's **confidence profile** as input and outputs the task accuracy.
- We benchmark our meta-model method and various baselines on 12 settings (4 LLMs x 3 tasks).
 - On average, meta-model estimations are as accurate as having 40 labeled test examples.

Looking Ahead

- Providing a channel for LLMs to say "sorry, I'm not confident about completing this task."
- Ensuring safety and reliability in LLM-powered applications.

Thank you!

Also, thanks to my awesome collaborators and mentors at USC NLP!

Harvey Yiyun Fu

Albert Xu

Xiang Ren

Robin Jia

https://nlp.usc.edu/

Links

- How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench
- Paper: https://arxiv.org/abs/2305.14947
- Code: <u>https://github.com/INK-USC/predicting-big-bench</u>
- Estimating Large Language Model Capabilities without Labeled Test Data
- Paper: https://arxiv.org/abs/2305.14802
- Code: <u>https://github.com/harvey-fin/icl-estimate</u>