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Motivation
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Want a faster model for your NLP task?

Your go-to method distill

RoBERTa-Large
24-layer, 1024-hidden

16-heads, 355M parameters

Distill-RoBERTa
6-layer, 768-hidden

12-heads, 82M parameters
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Want a faster model for your NLP task?

distill

RoBERTa-Large
24-layer, 1024-hidden

16-heads, 355M parameters

What if ?…

Something big, sparse, shallow, and fast!
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Motivation
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Deep Averaging Networks (DANs)
(Iyyer et al., 2015)

In 2015, 2-layer MLPs 
are considered 

“deep” networks

Something big, sparse, shallow, and fast!

https://people.cs.umass.edu/~miyyer/pubs/2015_acl_dan.pdf
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Depending on n-gram selection, 
the model can have billions of parameters!

N-gram models

Why do we believe it will work? Reason 1: N-gram models can be expressive!
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Why do we believe it will work?
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Word order does 
not matter?

Local attention is 
good enough?

Still memorizing 
patterns?

Reason 2: Some expensive operations in 
transformers may not be necessary
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Sparse Distillation
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● Given a text classification task (T), we …
○ 1. Fine-tune a RoBERTa-Large model and use it as the teacher model (Mt)
○ 2. Apply the teacher model to some in-domain corpus (C), save the logits.
○ 3. Use knowledge distillation and the saved logits to train the student model (Ms)
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Finding 1: 600x speed up, <3% performance drop
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● Take IMDB review classification as an example

Performance vs. Inference Speed

Teacher DANs Fine-tuning

IMDB Dev Performance

Task-specific KD

DAN (KD+FT) can match fine-tuning baselines
Within 3% gap compared to other methods 600x faster than other methods
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Finding 1: 600x speed up, <3% performance drop
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● Experimenting with Sparse Distillation on 6 single-sentence classification tasks

KD always brings 
improvement

On average, 
DAN (KD+FT) 

maintains 97% of 
the teacher’s 
performance
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Finding 1: 600x speed up, <3% performance drop
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Gap is bigger on 
sentence-pair 

tasks

KD still brings 
improvement

● Extending Sparse Distillation to a sentence-pair task



Sparse Distillation: Speeding Up Text Classification by Using Bigger Student Models

Finding 2: Use smaller vocab and large embedding dimension
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● We different parameter budgets (500 millions, 1 billion, 2 billions)
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Finding 3: Can flexibly prune the model
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Decent accuracy (90%) when 
model is cut to 3% of its 

original size

● Pruning the model’s least 
frequent n-grams …

But be careful with 
how the frequency 

is computed!
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Finding 4: Beneficial in various practical settings
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Privacy Preserving Setting Domain Adaptation / Generalization Setting
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Conclusions
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● We introduce Sparse Distillation, a framework that distills transformers into models 
that maintain competitive performance, while achieving up to 600x speed up.

● Counter-intuitively, the student model we use has more parameters than the teacher 
model -- The student model aggressively cuts off computation cost by compensating it 
with more parameters.

● Sparse Distillation is useful in many practical scenarios: flexible post-hoc pruning, helpful 
in privacy-preserving setting, helpful in domain generalization / adaptation setting.
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Conclusions (in a Meme 🤣)
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distill

distill

3x bigger
sparsely-activated

600x faster
strong performance


