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Motivation

P Want a faster model for your NLP task?

Your go-to method distill
—
RoBERTa-Large Distill-RoBERTa
24-layer, 1024-hidden 6-layer, 768-hidden
16-heads, 355M parameters 12-heads, 82M parameters
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Motivation

**  Want a faster model for your NLP task?

What if 2...

Something big, sparse, shallow, and fast!

RoBERTa-Large
24-layer, 1024-hidden
16-heads, 355M parameters
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Motivation

Deep Averaging Networks (DANs) % ¢ " iﬂi:ﬁ?&i&ws

(lyyer et al., 2015) @  “deep” networks

positive? negative?

linear 2

linear 1

Something big, sparse, shallow, and fast!

pooling

| like like this this movie
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https://people.cs.umass.edu/~miyyer/pubs/2015_acl_dan.pdf

Why do we believe it will work? Reason 1: N-gram models can be expressive!
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Depending on n-gram selection,
the model can have billions of parameters!
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Why do we believe it will work? Reason 2: Some expensive operations in

transformers may not be necessary

A possible explanation for the impressive per-
formance of masked language model (MLM)
pre-training is that such models have learned
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Sparse Distillation

. Given a text classification task (T), we ...
o 1. Fine-tune a RoBERTa-Large model and use it as the teacher model (Mt)
o 2. Apply the teacher model to some in-domain corpus (C), save the logits.
o 3. Use knowledge distillation and the saved logits to train the student model (Ms)

logits, 2x1
positive
RoBERTa-Large model (Mt)

negative

“ | t thi \ Align
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i the
federal holiday lagits; 2x1 logits!
in the United .
States ...” positive
N-gram model (Ms)
Corpus (C) negative
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Finding 1: 600x speed up, <3% performance drop

o Take IMDB review classification as an example

IMDB Dev Performance Performance vs. Inference Speed
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DAN (KD+FT) can match fine-tuning baselines
Within 3% gap compared to other methods 600x faster than other methods
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Finding 1: 600x speed up, <3% performance drop
« Experimenting with Sparse Distillation on 6 single-sentence classification tasks

100

95 KD always brings

improvement
90
85 On average,
DAN (KD+FT)
maintains 97% of
80 the teacher’s
performance
75

IMDB SST-2 TREC AGNews Civil Com. Wiki Toxic

M RoBERTa-Large (FT) m KD (from scratch)  m DAN (KD+FT)
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Finding 1: 600x speed up, <3% performance drop

« Extending Sparse Distillation to a sentence-pair task KD still brings SEID 5 e el
. sentence-pair
Improvement
tasks
100
95
90
85
80
75

IMDB SST-2 TREC AGNews Civil Com. Wiki Toxic
M RoBERTa-Large (FT) m KD (from scratch)  m DAN (KD+FT)
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Finding 2: Use smaller vocab and large embedding dimension

e We different parameter budgets (500 millions, 1 billion, 2 billions)
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Finding 3: Can flexibly prune the model

e Pruning the model’s least
frequent n-grams ...
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Finding 4: Beneficial in various practical settings

Privacy Preserving Setting Domain Adaptation / Generalization Setting
95 100
90 95
85
90
80
75 _ 85
70 80
IMDB TREC 75 .
W Train from scratch 70
Source: IMDB -> Target: SST2 Source: SST2 -> Target: IMDB
m Knowledge Distillation (in-domain corpus) _
m DAN (train from scratch on target) = DAN (KD on source)
m Knowledge Distillation (in-domain corpus + task data) m DAN (KD on source + FT on target) m RoBERTa-Large (FT on target, upper bound)
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Conclusions

e We introduce Sparse Distillation, a framework that distills transformers into models
that maintain competitive performance, while achieving up to 600x speed up.

e Counter-intuitively, the student model we use has more parameters than the teacher

model -- The student model aggressively cuts off computation cost by compensating it
with more parameters.

e Sparse Distillation is useful in many practical scenarios: flexible post-hoc pruning, helpful
in privacy-preserving setting, helpful in domain generalization / adaptation setting.
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Conclusions (in a Meme ¥)

3x bigger
sparsely-activated
600x faster
strong performance
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