On the Influence of Masking Policies in Intermediate Pre-training

Qinyuan Ye^{1,†} † Work partially done while at Facebook Al

Belinda Z. Li^{2,†} S † Work partially done while at Facebook AI

Sinong Wang³ Benjamin Bolte³ Hao Ma³

3

Wen-tau Yih³

Xiang Ren¹

Madian Khabsa³

USC Viterbi Department of Computer Science

facebook Artificial Intelligence

Motivation

• *"Pre-train then fine-tune"* is a predominant pipeline in NLP.

 Inserting an *intermediate stage with a hand-crafted masking policy* can be helpful.

masking named entities → better closed-book QA models (Roberts et al., 2020)

Motivation

- In this work we offer a large-scale *empirical study* to investigate *the influence of masking policies in intermediate pre-training*.
- We aim to answer
 - In what cases such intermediate pre-training is helpful
 - Whether hand-crafted heuristic objectives are *near-optimal*
 - Whether a masking policy designed for one task is *generalizable* beyond that task

Preliminaries – Masked Language Modeling

• Masked language modeling (MLM) and variants are common for pre-training large-scale transformers, e.g., BERT, RoBERTa, BART, T5.

Original Sentence

The quick brown fox jumped over the lazy dog.

Masking Policy

Masked Sentence

The quick **<mask>** fox jumped **<mask>** the lazy dog.

Text-to-text Model

Pre-train Target

The quick **brown** fox jumped **over** the lazy dog.

Analysis Setup – Training Pipeline

We ensure that the masking policy is the only variable in this pipeline.

Analysis Setup – Downstream Tasks

Closed-book QA

TQA: TriviaQA WQ: WebQuestions NQ: Natural Questions

Knowledge-intensive Tasks

AY2: Entity Linking ZSRE: Zero-shot Relation Extraction WoW: Dialogue

Multiple-choice QA

WIQA QuaRTz ROPES

Each example is a source-target pair (s, t), accompanied with a context paragraph c

Compared Masking Policies (1/3)

• Heuristics

Original Objective (+Orig)

Mask 15% randomly selected tokens and recover full sequence

Random Masking (+Rand)

Mask 15% randomly selected tokens and recover the masked tokens

Salient Span Masking (+SSM)

Mask and recover one named entity

Masked Sentence

I <mask> lived in Los <mask> for two years.

Text-to-text Model

Pre-train Target I have lived in Los Angeles for two years. Masked Sentence I <mask> lived in Los <mask> for two years.

Text-to-text Model

Pre-train Target lived Angeles

Masked Sentence

I have lived in <mask> for two years.

Text-to-text Model

Pre-train Target Los Angeles

Compared Masking Policies (2/3)

- Supervised
 - Identify *likely-answers* and mask them
 - The masking policies is similar to an extractive reading comprehension model
 - The policy is trained with *(context, answer)* examples, *without the question*

Example	
Input:	[Charles, Schulz, was, the, creator, of, Snoopy]
	Masking Policy
	Start Index: [1,0,0,0,0,0,0] End Index: [0,1,0,0,0,0,0]

Compared Masking Policies (3/3)

- Meta-learned
 - Our goal is closely related to the concept of "*learning to learn*" (Schmidhuber, 1987; Thrun and Pratt, 1998).
 - The masking policy should help the text-to-text to learn quickly when fine-tuned on downstream tasks.

Performance Improvement with +Orig

Overall, intermediate pre-training with the original objective leads to improved performance.

Performance Improvement with +Orig

ROPES dataset is *the only exception*. We found that intermediate pre-training may lead to *catastrophic forgetting*.

Pay attention to the corpus from which the dataset is created!

- SSM is beneficial for all entity-centric tasks.
- Use heuristic masking policies that resemble the downstream tasks, or masking information known to be important for the downstream task, tend to be helpful.

+Orig is better for long outputs

+Rand is better for short outputs

Analysis – Bringing in Learned Policies

Performance Improvement on TriviaQA

Learned policies are most successful on TriviaQA.

Meta-learned policies also outperform +Orig on NQ (+0.98 EM), ZSRE (+0.32 EM) and ROPES (+10.03 Acc.)

Analysis – Bringing in Learned Policies

Additional Observations

Improved Learning Efficiency: Supervised policy has better learning efficiency than SSM on TriviaQA.

<u>Generalization of Learned Policies</u>: Learned masking policies *can positively transfer*. However more investigation is needed.

Overfitting on ZSRE: The learned policy may overfit to the training data if there is a mismatch between train/test data

Please check out the full result tables in our paper!

		TQA	TQA WQ		NQ		-			
BART-Base		$21.82_{\pm.15}$	$26.23_{\pm.05}$		$23.72_{\pm .25}$		-			
+Orig			A	Y2 Z		ZSRE		WoW		
+Rand	Metric		EM		EM		F1			
+Superv	BART	D	01.0	7	1 00		15 14			
+Superv	+Ori			ROPES		WI	VIQA Q		aRTz	
+Superv	+Ran	BART-Base		46.60	± 0.48	71.18	3 ±1.12	62.80	$)_{\pm 1.16}$	
+Superv	+SSI	+Orig		43.68	± 0.67	73.06	0.100 ± 0.72	63.3	$5_{\pm 0.52}$	
+Meta-l	+Sup	+Rand		44.59	± 1.15	70.55	0.42	63.3	$l_{\pm 1.74}$	
+Meta-l	+Sup	+SSM		50.51	± 1.15	69.31	± 0.77	64.4	$l_{\pm 1.04}$	
BART-L	+Met	+Meta-learned-ROP	ES	53.71	± 2.33	73.05	$\dot{0}_{\pm 0.98}$	62.93	$3_{\pm 1.28}$	
+Orig	+Met	+Meta-learned-WIQ	Α	48.30	± 0.69	72.38	3 ± 0.37	63.14	$4_{\pm 1.26}$	
+SSM		+Meta-learned-Qual	RTz	49.01	± 1.92	72.65	0.53	63.69	$9_{\pm 0.48}$	
+Supervised-TQ _{A(10p1)} 21.10 \pm .34 20.11 \pm .74 24.20 \pm .28										

Analysis – Quantitative Analysis

Relation to Part-of-speech Tags

The learned masks are more *customized* towards the downstream tasks.

Relation to Token Frequency

Random → approximates a Zipfian Distribution SSM → Weaker preference for Zipfian Learned Policies → Even weaker preference

Conclusions

- We introduce *an analysis protocol* to study the influence brought by different masking policies.
- We describe *two methods (supervised/meta-learned masking policies)* to learn masking policies.
- We conduct a large-scale *empirical study* with *9 NLP tasks* and *3 categories of masking policies*.
- We ...
 - o identify several *successful cases* of intermediate pre-training,
 - offer *in-depth analysis and insights* for the masking policies we used,
 - discuss the *pros and cons* of learned masking policies,
 - *summarize several suggestions and tips* for researchers who wish to adopt intermediate pre-training in their applications.