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TL;DR

We adapt fusion-in-decoder models (originally designed for open-domain QA) to perform in-context learning.

~ Performance Efficiency

FiD-ICL outperforms Concat-ICL and Ensemble-ICL.
The gap between FiD-ICL and fine-tuning is <3% on P3 meta-test tasks.

FiD-ICL is faster than Concat-ICL and Ensemble-ICL;
More efficient than fine-tuning when considering optimization costs.

Experiment Setting

Data

Motivation: QA vs. ICL

Closed-book QA
(Roberts et al., 2020)

Retrieval-Augmented Generation
(Lewis et al., 2020)

Fusion-in-Decoder
(Izacard et al., 2020)

Public Pool of Prompts (P3)

(Sanh et al., 2022; Bach et al., 2022)
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(1) FiD-ICL enables efficient meta-training; Concat-ICL would fail at the scale of 3B.
Key Observations  (2) FiD-ICL is comparable or outperforms the Concat-ICL and Ensemble-ICL.

The gap between FiD-ICL (x gradient-free) and fine-tuning (A gradient-based) is <3%.

Efficiency: Comparing Runtime (Pre-inference + Inference)
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Changing the Number of Shots Perturbation to In-Context Examples
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Number of Shots

Meta-test average performance
does not grow with more shots.

retrieval augmentation,
sparse attention,
hypernetworks.

Performance is rather insensitive to
perturbations to in-context examples.

The behavior is task-dependent. FiD-ICL is still not learning effectively.
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