Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts

Findings of EMNLP 2022

Department of Computer Science & Information Sciences Institute University of Southern California <u>http://inklab.usc.edu</u>

Background: Massive Multi-task Learning

training a model on a multi-task mixture

helpful for tasks seen in the mixture

helpful for generalizing to unseen tasks

A potential limitation...

for tasks in <u>different</u> domains with <u>different</u> complexity requiring <u>different</u> skills

decompose and recompose skills

Background: Task-level Mixture-of-Experts

Figure 11: An actual routing map for MNIST-MTL.

Routing Networks Rosenbaum et al., 2018

Task-level MoE for Machine Translation

Mixture-of-Experts Jacobs et al., 1991

Romance

0.030

0.018 0.012

0.000

South-Central Dravidian

ta_en hi_en

ur_en

South Dravidiar

Kudugunta et al., 2021

Pathways Google Al Blog, 2021 Barham et al., 2022

In this work

- We train task-level mixture-of-expert models to multi-task on diverse NLP tasks
 - Explicit, Flexible, Interpretable

Task-Level Mixture-of-Experts

Does this help multi-task learning? Does this improve generalization to new tasks? What is learned by each expert?

Experiment Setup: Data

CrossFit 💥 (Ye et al., 2021)

Random Partition:

120 seen tasks for upstream multitask learning 18 unseen tasks for testing cross-task generalization

	Classification	Question Answering	load_dataset() *		
	Sentiment Analysis	Reading Comprehension			
	Amazon_Polarity (McAuley et al. 2013)	SQUAD (Rajpurkar et al. 2016)	*		
Conditional Generation	Poem_Sentiment (Sheng et al. 2020)	TweetQA (Xiong et al. 2019)	Others		
Summarization	Paraphrase Identification	Multiple-Choice QA	Regression		
Gigaword (Napoles et al. 2012) XSum (Narayan et al. 2018)	Quora Question Paraphrases (Quora) MRPC (Dolan et al. 2005) PAWS (Zhang et al. 2019)	CommonsenseQA (Talmor et al. 2019) OpenbookQA (Mihaylov et al. 2018) AI2_ARC (Clark et al. 2018)	Mocha (Chen et al. 2020) Yelp Review Full (Yelp Open Dataset)		
Dialogue	Natural Language Inference	Closed-book QA	Others		
Empathetic Dialog (Rashkin et al. 2019) KILT-Wow (Dinan et al. 2019)	MNLI (Williams et al. 2018) QNLI (Rajpurkar et al. 2016) SciTail (Knot et al. 2018)	WebQuestions (Berant et al. 2013) FreebaseQA (Jiang et al. 2019) KILT-NQ (Kwiatkowski et al. 2019)	Acronym Identification Sign Language Translation Autoregressive Entity Linking		
Others (text2SQL, table2text)	Others (topic, hate speech,)	Others (yes/no, long-form QA)	Pronoun Resolution		

Also tested on P3 dataset (Sanh et al., 2021)

Experiment Setup: Model

Experiment Setup

Data

Random Partition in CrossFit

120 Train Tasks

18 Test Tasks

Model

MoE-version of Transformer

Initialized from BART-Base (Lewis et al., 2020)

Mixture-of-Experts Transformer Layer

Router

Experiment Setup

Data

Model

How to make it work?

Degenerate to non-MoE transformer

How to make it work?

Important Factors

Important Factors

Important Factors

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts | Findings of EMNLP 2022

Important Factors

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts | Findings of EMNLP 2022

Important Factors

How to make it work?

Stage 1 **Output Hidden States Important Factors** 0.2 **Two Stage** 0.5 0.3 Training Se 0.3 0.5 0.2 Output 1 Output 2 Output 3 Selection Function Transformer Transformer Transformer Layer Layer Layer Yes (Expert 1) (Expert 2) (Expert 3) Router Input Hidden States Task Representation Gum No Router Mixture-of-Experts Transformer Layer **Keep the weights** And freeze Gumbe Stage 2 Output Hidden States Straig 0.2 0.5 0.3 0.3 0.5 0.2 Output 1 Output 2 Output 3 . **Re-init with** . . Selection Function Transformer Transformer Transformer pre-trained Layer Layer Layer (Expert 1) (Expert 2) (Expert 3) Router weights Input Hidden States Task Representation Mixture-of-Experts Transformer Layer Router

How to make it work?

Important Factors

Less Important Factors

Random

Text Embedding

Fisher Information Task Embedding (<u>Vu et al., 2020</u>)

Less Important Factors

How to make it work?

MLP

LSTM

Transformer

Freeze Task

Repre.

Yes

No

How to make it work?

Discrepancy Between Loss and Performance

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts | Findings of EMNLP 2022

Vanilla Multi-tasking Random/Avg Task-level Routing Learned Task-level Routing

- Multi-task learning on the train set of 120 tasks
 - Report the average of performance on dev set

Vanilla Multi-tasking Random/Avg Task-level Routing Learned Task-level Routing

- Multi-task learning on the train set of 120 tasks
 - Report the average of performance on dev set

Vanilla Multi-tasking Random/Avg Task-level Routing Learned Task-level Routing

Multi-task learning on the train set of 120 tasks Vanilla Multi-tasking Random/Avg Task-level Routing Report the average of performance on dev set **Learned Task-level Routing** 0 Task-level MoE can match the performance of the best baseline 56 54 Dev Set Performance It uses less computation during inference 52 50 **BART-Base** Task Random Task Random Avg (3/3) TaskMoE 1 TaskMoE 2 (1/3)(2/3)Computation **1**x **2**x **1**x **1**x **3**x **1**x

Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts | Findings of EMNLP 2022

- Cross-task generalization to 18 unseen tasks
 - Report the average of relative performance gain on unseen tasks

Vanilla Multi-tasking Random/Avg Task-level Routing Learned Task-level Routing

- Cross-task generalization to 18 unseen tasks
 - Report the average of relative performance gain on unseen tasks

Vanilla Multi-tasking Random/Avg Task-level Routing Learned Task-level Routing

Breaking down to each task

• Learning Dynamics

• Learning Dynamics

• Learning Dynamics

Developing patterns early on

• Learning Dynamics

More fine-grained

• How do we interpret these routes?

Manually-defined Features

	T1	T2	Т3	 	 Tn
Extractive?	Y	Y	N		Y
Use world knowledge?	N	N	N		Y
Has short input?	N	Y	Y		N

(c) Step 60000

Learned Routes

N_{features} x N_{tasks}

N_{experts} x N_{tasks}

\rightarrow Correlation between features and experts

- L0E1 L6E1 1.0 L0E2 L6E2 L0E3 L6E3 L1E1 -L7E1 L1E2 L7E2 0.5 L1E3 L7E3 L2E1 L8E1 L2E2 L8E2 L2E3 L8E3 - 0.0 L3E1 · L9E1 L3E2 L9E2 L3E3 L9E3 L4E1 · L10E1 -0.5L4E2 L10E2 · L4E3 L10E3 L5E1 L11E1 L5E2 L11E2 -1.0 L5E3 L11E3 Classification QA Genither QA QA Genit Classification , ' afge Norld Verified with expert disabling experiments
- How do we interpret these routes?

Pearson correlation, p<0.01

Conclusions

- We explored ...
 - Adapting transformer models to be task-level mixture-of-expert models
 - Training such models to multi-task on diverse NLP tasks
- We found that ...
 - Some design choices matter a lot
 - The resulting models are better at generalizing to unseen tasks
 - Learned routes and experts partly align with task characteristics defined by us

Looking Forward

- Making few-shot learning more computationally efficient
 - Explore the area between in-context learning and fine-tuning
- Data Augmentation \rightarrow Task Augmentation
 - From 160 tasks (CrossFit) / 36 tasks (P3) to more "tasks"